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1.0 INTRODUCTION

The goal of this research is to develop a basic scientific understanding of the

relation between the macroscopic mechanical properties of ceramic composites and the

properties of the microstructure, especially the fiber-matrix interface. The work is

directed to two main topics. One is to devise experiments that are capable of measuring

the properties of the fiber-matrix interface directly, and the other is to develop micro-

mechanics models that relate the interface properties quantitatively to the strength,

toughness and failure mechanisms of the composite.

The detailed results of the research are contained in four papers which are

included as Sections 2 to 5 of this report, and which have been submitted to, or published

in the journals and books noted on the title pages. The results are briefly summarized

below.

In the studies of fiber/matrix interface properties, novel methods were devel-

oped for investigating bonding at the interface, and to measure sliding resistance

(Sections 2 and 3). These are based on an indentation technique (developed previously in

our [R&D) in which the ends of individual fibers are pushed with a diamond indenter. The

method was analyzed theoretically to determine the range of frictional stresses that can

be measured. This range was found to be more than three orders of magnitude (Section

2). Theoretical analyses were also developed for combined debonding and frictional

sliding and for frictional sliding during loading, unloading and load cycling (Section 3).

Measurements were done on an SiC/glass-ceramic composite (LAS III, UTRC) using two

indentation instruments; a microhardness tester which provided continuous measurements

of force as a function of time during loading (at relatively high loading rates), and an

ultralow load instrument (collaboration with W. Oliver, ORNL) which provided continuous

force-displacement measurements during loading, unloading and load cycling at lower

loading rates (Section 3). The results provided an upper-bound estimate for the fracture

energy of the interface (0.04 Jem -2, similar to the energy of Van der Waa]s bonds) and a

measure of the magnitude of the frictional stress (2.5 ± I MPa). They also indicated that

for a given fiber, the frictional stresses were very uniform over fiber lengths up to I ram,

that the frictional stress decreases slightly upon reverse sliding, but remains constant

I
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thereafter during cyclic sliding, and that the frictonal stress is not sensitive to load rate

for loading times in the range 100 ms to 100 s (Section 3). Experiments were also done in

the presence of an applied transverse compression to evaluate the friction coefficient at
the interface and the influence of Poisson's contraction or expansion on frictional

stresses (Section 2). Changes of interface properties at high temperatures were also

evaluated and a very simple method using a Knoop indenter was developed for measuring
reverse fiber sliding.

The fracture mechanics modeling (Sections 4 and 5) addressed the problem of

tensile failure of composites containing aligned fibers with weak frictional stresses at
the fiber/matrix interface, and with fiber strengths in the range where fiber failure can

accompany matrix cracking. This modeling is expected to provide the basis for further

development of more advanced analyses of toughening in many whisker composite sys-

tems. The general solution to this problem can be quite complicated because failure may
initiate with either growth of a crack in the matrix or fracture of fibers that bridge the
matrix crack. Morever, both of these failure modes may continue either unstably at

constant applied stress or stably with increasing applied stress. An approximate

analytical approach that we developed recently was further expanded (Section 4) and
numerical solutions have been obtained (Section 5). The solutions define several

different failure mechanisms, specify conditions for transitions between mechanisms and
provide strength/crack-size relations for each mechanism. The results were obtained in

terms of normalized stresses and crack lengths, with two microstructural variables, the
normalized fiber strength and the area of unbroken or missing fibers in the initial crack.

The most important transition in failure mechanism is from a noncastrophic mode of

failure (involving periodic matrix cracking at a stress that is independent of crack length)

to a catastrophic mode. Explicit relations have been derived for composite properties

such as matrix cracking stress (noncatastrophic mode), the condition for transition to

catastrophic failure mode, and fracture toughness in the region of catastrophic failure, in
terms of the interface characteristics, the fiber strength and the other microstructural

properties of the composite.

2
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2.0 MEASUREMENT OF INTERFACE PROPERTIES IN CERAMIC COMPOSITES

Submitted to J. Am. Ceram. Soc.
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MEASUREMENT OF INTERFACE PROPERTIES IN CERAMIC COMPOSITES

D.B. Marshall

Rockwell International Science Center
Thousand Oaks, CA 91360

W.C. Oliver

Metals and Ceramics Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831

ABSTRACT

Properties of the fiber/matrix interface in a SiC/glass-ceramic com-

posite are investigated using an indentation method in which a pyramidal

indenter is used to push on the fibers and cause sliding at the interface. An

ultralow-load indentation instrument was used to measure force and displace-

ment continuously during loading, unloading, and load cycling. Frictional

sliding and combined debonding/frictional sliding at the interface was

analyzed. The analysis enabled the results to be used to provide a measure of

the debond fracture energy, the magnitude of the frictional sliding stress, a

measure of the uniformity of the frictional stress, and an indication of the

sensitivity of the frictional stress to repeated sliding, varying load rate,

and exposure to high temperatures.
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1.0 INTRODUCTION

A method was developed recently for measuring the magnitude of fric-

tional stresses at the interface between fibers and matrix in composites.1 A

pyramidal indenter was used to push on the ends of individual fibers and the

resulting displacement of the surface of the fiber below the matrix surface

(due to sliding) was measured. The frictional stress was calculated from the

force-displacement relation obtained by analysis of the frictional sliding.

The force and displacement measurements were obtained only at the peak of the

load cycle and the sliding analysis was based on sliding at constant shear

resistance at the interface, with the assumption that the length over which

sliding occurred between the fiber and matrix was large compared to the fiber

diameter. These experiments provided measurements of average frictional

stress at individual fibers, which were consistent with values inferred inde-

pendently from fracture measurements. 1'2 However, they left open several

questions concerning the nature of the interface which are important for

understanding the detailed role of the interface in fracture processes. 3,4

These include whether or not there is any bonding at the interface in addition

to frictional forces (i.e., whether fiber displacement involves debonding

followed by frictional sliding), whether the static and dynamic friction

coefficients differ, whether the frictional stress is constant along the

slipping region of fiber, and whether the sliding resistance remains constant

during reverse sliding upon unloading (and subsequent load cycling).

5
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In this paper we present direct measurements of the forces and dis-

placements during loading, unloading, and subsequent load cycling in a SiC/

glass-ceramic composite. The measurements are correlated with analysis of

combined debonding and frictional sliding and analysis of reverse and cyclic

sliding to answer some of these questions. Results of additional preliminary

experiments to investigate effects of loading rate and high temperature degra-

dation of the interface properties are discussed.

6

J8014A/bw



9 Rockwell International
Science Center

2.0 EXPERIMENTS

The indentation experiment is shown schematically in Fig. 1. In the

previous work1 sufficient force was applied to a Vickers indenter to make its

edges contact the matrix, therebyallowing the depth u corresponding to the

peak load, to be obtained from subsequent measurements of surface contact

dimensions and the known geometry of the indenter. In the present experiments

the forces and displacements were measured continuously during loading,

unloading, and load cycling, mostly at loads sufficiently low that the

indenter did not touch the matrix.

The composite used for these experiments was a lithium-alumino-

silicate glass-ceramic matrix reinforced by SiC (Nicalon) fibers,* which has

been used in previous studies of interface properties and mechanical behav-

ior. 1'2'5'6 The composite was tested in both the as-received state and after

heat treatment in air and argon at temperatures between 9000C and 1250 0C.

Heat treatment was done in air by inserting the specimen into a preheated

furnace for a specified time, and in argon by heating and cooling at a con-

stant rate, 10C/min. The heat treatments provided a limited indication of

the influence of high temperatures on the sliding resistance of the inter-

face. They also provided a convenient means for calibrating some of the

force-di splacement measurements.

*United Technologies Research Center, East Hartford, CT, SiC/LAS III.

7
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Most experiments were done using an ultralow-load indentation instru-

ment* which allowed forces and displacements to be measured with resolutions

of 0.5 PN and 0.2-0.3 nm.7 The indenter in this instrument is a triangular

pyramid with the same depth-to-area ratio as the Vickers (square) pyramid. A

coil and magnet assembly is used to move the indenter toward the surface and

to apply the load, and the position of the indenter is measured using a capac-

itor displacement gage. In the present experiments loads up to 0.12 N were

applied by moving the indenter at constant velocity 10 nm s-1, giving typical

loading times - 100 s. A scanning electron micrograph of a fiber after

indentation is shown in Fig. 1(b).

The frictional stress was also measured using a second indentation

instrument in which the load was applied gravitationally with a dashpot resis-

tance.** This system allowed more rapid loading (loading times as small as

- 10 ms) so that comparison of the two sets of measurements allowed a prelim-

inary estimate of the influence of loading rate on the sliding resistance. A

transducer load cell was used to measure the force as a function of time dur-

ing loading but displacements were not measured. The F(t) measurements are

not readily amenable to quantitative analysis, but they do provide qualitative

information on the fiber sliding at the higher loading rates.

*Nanoindenter, Nano Instruments.
**Zwick.

8
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3.0 RESULTS

Force and displacement measurements obtained from the Nanoindenter

during indentation of the fiber shown in Fig. 1(b) are plotted in Fig. 2(a).

The force was increased monotonically from 0 to 0.10 N, decreased to 0.002 N,

and then cycled between these two values five times. All force changes were

effected by moving the indenter at a constant speed of 10 nm s- . The

decreasing slope of the loading curve and the hysteresis in the unload/reload

curves are both a result of frictional sliding at the fiber/matrix interface.

The results of a similar experiment done on a fiber in another piece

of the same composite that had been heat treated for 10 min at 1000°C in air

are shown in Fig. 2(b). In this case the loading curve has a continuously

increasing slope (the curve is close to parabolic), with shape similar to that

of curves obtained from indenting homogeneous materials. 7 Moreover, the

reloading curve retraced the unloading path without any sign of the hysteresis

that is evident in Fig. 2(a). These results suggest that the heat treatment

caused oxidation and strong bonding at the interface, which prevented sliding

of the fiber during indentation. Subsequent observation of the fiber by

scanning electron microscopy confirmed that sliding had not occurred.

The directly measured displacements in Fig. 2(a) represent the dis-

placement of the indenter (uT in Fig. 2(a)), which is the sum of the sliding

distance u and the penetration, uo (elastic and plastic), of the indenter into

the fiber. The results in Fig. 2(b) for the heat-treated composite which does

9
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not exhibit sliding provide a convenient calibration of the indenter penetra-

tion uo.

The true fiber sliding distances obtained by subtracting the dis-

placements in Fig. 2(b) from those in Fig. 2(a) are plotted in Fig. 3 for one

load-unload-reload cycle. After unloading, the fiber remained depressed below

the matrix surface a distance nearly half of the peak load displacement,

whereas reloading to the peak load restored the original displacement. Subse-

quent load cycling caused the first unload/reload path to be retraced.

Measurements on 15 such fibers produced very similar results.

Measurements of force as a function of time during loading with the

Zwick instrument are shown in Fig. 4, for both the as-received and the heat-

treated composite. The effect of fiber sliding in the as-received material is

clearly evident. The peak load (0.24 N) was sufficiently high for the edges

of the indenter to touch the matrix in the as-received specimen (contact

occurred at force of 0.17 N as indicated in Fig. 4). In these measurements

the indenter approached the surface at a fixed velocity, but after contacting

the surface its deceleration was dictated by the sum of the gravitational

force, the reaction of the indented material, and the dashpot resistance.

The measurements of Figs. 2(b) and 4 indicate that short exposure to

air at 1000 0C causes strong bonding at the interface. Similar results were

obtained for 5 min exposure at 900'C (a wider range of temperatures was not

investigated). In contrast, indentation experiments after heat treatment in

argon at temperatures up to 1250 0C did not reveal any bonding; the average
aI

10
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room temperature frictional stress based on peak-load measurements was not

changed by the heat treatment. However, observations of fibers that had been

indented before the heat treatment indicated that relaxation of the sliding

resistance occurred at high temperatures. After heat treatment at 1250 0C the

residual displacements of the indented fibers (see Fig. 2(a)) had completely

relaxed. After treatment at 1170 0C the residual displacement had relaxed to

about half of its original value. This is the temperature range where the

viscosity of the glass-ceramic matrix decreases rapidly and the matrix creeps

under small loads.8

III
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4.0 ANALYSIS OF FORCE-DISPLACEMENT RELATIONS

4.1 Frictional Sliding

If we assume that sliding occurs between matrix and fibers wherever

the shear stress parallel to the interface exceeds a constant value T, then

application of a force F to the end of the fiber causes sliding beginning at

the surface and extending to a depth i (Fig. 5). With a shear-lag approxima-

tion in which only normal stresses a exist within the fiber (shear stress

concentrated at the interface), equilibrium of the fiber at z < i requires

do/dz = 2T/R (1)

where R is the radius of the fiber. If we assume that i >> R, then the elas-

tic stresses at z > i may be neglectedI and Eq. (1) with the boundary condi-

tions a(t) = 0 and o(O) = F/zR 2 defines the sliding distance

= F/2nRT (2)

and the strain distribution in the fiber (Fig. 5)

£(z) = (F/rR2Ef)(I - z/) (3)

where Ef is the Young's modulus of the fiber. The displacement of the fiber

surface below the original specimen surface, obtained by integration of Eq.

12
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(3) over the range z 0 to z = t, is

u F2 /4T2R3tEf (4)

4.2 Interface Debonding and Frictional Sliding

More generally, fiber sliding may be expected to entail extension of

a debonding crack at the fiber/matrix interface followed by frictional sliding

over the crack surfaces. In this case the sliding depth is dictated by the

length, c, of the debond crack (Fig. 6). For c >> R the strain distribution

in the region z 5 c in the fiber is given by Eq. (3), but the displacement of

the fiber surface below the matrix is given by integration between z = 0 and

Z = c:

u = (F/7R2Ef)(c - c2/2t) (5)

Therefore, evaluation of u requires knowledge of the debond length c.

The debond length can be calculated from an energy balance analysis

for incremental crack growth. If the crack extends by dc at constant applied

force F, then the strain energy of the specimen increases by dUE, the poten-

tial energy of the loading system decreases by dUL, work, dUF, is done against

frictional forces, and there is additional energy dUr associated with the new

crack area. For large debond cracks (c >> R) these energy changes are given

by (Appendix)

13
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dUE = (F2/211R2Ef)(1 - 2c/i + c2/12)dc (6a)

dUF = (F2 /7v2fJ(C/i - C2/12) (6b)

dUL = (F2 /7R2Ef)(1 - c/i)dc (6c)

and

dU r = 4nRrdc (6d)

where 2r is the fracture surface energy per unit area of interface. The net

energy change of the system is

dU = dUE - dUL + dUf + dUr

= -(F2 /27rR 2Ef)(1 - c/1) 2dc + 4rRrdc (7)

With the fracture criterion dU/dc s 0, Eq. (7) gives an expression for the

equilibrium crack length in terms of the applied force and other microstruc-

tural parameters.

(1 - c11)2 = 8lv2R3rEf/F 2  (8)

14
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Equation (8) represents stable crack growth with increasing force. This

implies that debonding does not cause a discontinuity (load drop) in the

force-displacement relation. However, the analysis applies only to well-

developed cracks with c >> R. Crack initiation could involve instability

which wojld be reflected in the force-displacement relation. In the limit of

no bonding at the interface (r = 0), Eq. (8) reduces to the result c = i of

Section 4.1. In the limit of a bonded interface without friction (T = 0,

i.e., i - _), the crack length dependence disappears, implying that at a

critical applied force given by Eq. (7), the debond crack extends without

limit under mechanical equilibrium.

The fiber displacement at the surface, given by Eqs. (5) and (8) is

u = F2 /4n2R3 Ef - 2r/T (9)

Comparisons of Eqs. (4) and (9) indicates that under combined debonding and

sliding the displacement of the fiber surface is smaller than it is for pure

sliding by a constant amount 2r/.

4.3 Reverse Sliding

If the force applied to the end of a fiber is increased to a maximum,

Fm, and then decreased, sliding occurs in the reverse sense during unloading,

beginning at the surface and extending a distance s along the interface

(Fig. 7). The resulting strain distribution in an unbonded fiber is shown in

Fig. 7. Assuming that the frictional stress remains the same during loading

15B1/b
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and unloading the fiber displacement (shaded area in Fig. 7) is

u = Um11 - (1 - F/FM)2/2] (10)

where um is the displacement at the maximum load, given by Eq. (4) with F =

Fm. After completely unloading (F = 0) the displacement is one half of the

peak load displacement. If, on the other hand, the frictional stresses during

forward and reverse sliding are unequal, then the displacement after unloading

becomes

u = Um/(1 + T1/T2(11)

where T1 and T2 are the frictional stresses during forward and reverse slid-

ing. For the fiber considered in Section 4.2, which undergoes combined

debonding and sliding, the displacement during unloading is smaller than that

in Eq. (10) by the constant amount 2r/T.

4.4 Reloading

The strain distribution in the fiber during reloading is shown in

Fig. 8. The displacement of the fiber surface, given by the shaded area in

Fig. 8, is

u = (um/2)[l + (F/FM)21 (12)

16
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If the frictional stress decreases after the first loading but remains con-

stant thereafter, Eq. (12) becomes

U/Um + (1 + I/T2)- 1 + (~Ti/TE2) (F/Fm) 2/2 (13)

17

J8014A/bw



O Rockwell International
Science Center

5.0 DISCUSSION

The results in Fig. 3 and the analysis of Section 4.2 allow an upper

bound to be estimated for the fracture energy associated with any bonding that

may exist at the interface. The data from Fig. 3 are plotted in Fig. 9 in the

form F2 vs u, for which Eq. (9) predicts a linear relation for the first load-

ing. A line fitted to the data for displacements larger than - 0.1 Wm ex-

trapolates through the origin, suggesting that the fracture energy is r = 0.

The maximum departure of the data from this result is 2r/T < 0.01 pm. With

the measured fiber radius R = 8.0 im and elastic modulus Ef = 200 GPa, the

measured slo'e of the line in Fig. 9 with Eq. (9) gives T = 3.6 MPa. There-

fore, the fracture energy is 2r < 4 102 J/m2 . This is in the range of

energies associated with Van der Waals forces and is consistent with observa-

tions by Brennan6 of a thin layer of carbon at the fiber/matrix interface in

this composite.

For displacements larger than - 0.1 wm the data in Fig. 9 follow the

prediction of Eq. (4) very closely. Since the sliding distance increases in

proportion to the applied force (Eq. (2)), each force increment causes a new

area of fiber to begin sliding and contribute to the total fiber displace-

ment. Therefore, the results suggest that the frictional stress is very uni-

form along the fiber and is not influenced by irregularities of fiber shape or

thickness that occur over lengths comparable to or larger than the fiber

radius.

18
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At small forces the displacements in Fig. 9 are smaller than pre-

dicted by Eq. (4), and for forces : 0.01 N no displacement was resolved.

Deviation at low loads is expected because Eq. (9) is based on an assumption

that sliding occurs over a large distance compared with the fiber radius. The

sliding distances calculated from Eq. (2) for the linear region of Fig. 9 are

i/R - 10 to 70. A rigorous analysis for small sliding distances is not avail-

able. However, we can see that the sign of the deviation is consistent with

expectations: the boundary condition o(i) = 0 leading to Eq. (2) becomes a(k)

> 0 for small t, so that Eqs. (2) and (4) give overestimates of i and u. A

modified shear-lag analysis for fiber sliding in composites where all fibers

are loaded simultaneously was developed recently by Budiansky et al,9 but this

analysis becomes invalid as the volume fraction approaches zero (single

fiber). However, it is worth noting that the analysis predicts that, for

purely frictional sliding, sliding does not occur until a critical load is

exceeded, as observed in Fig. 3. The shear stresses at the interface at the

onset of sliding are estimated in Appendix B. The calculation suggests that

at the observed onset of sliding (F - 0.01 N) the shear stresses exceed the

frictional stress, T = 3.6 MPa, over a region beneath the surface with length

about equal to the fiber diameter.

With the observation that debonding does not influence the sliding

characteristics, the data for unloading and reloading can be compared with the

predictions of Eqs. (10) and (12). These are plotted in Fig. 9 with the

measured values um = 0.793 um and Fm = 0.108 N. The extent of reverse sliding

is larger than predicted, suggesting that the frictional stress is smaller

19
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during reverse sliding than during the first forward sliding. The measured

displacement at full unload (u/um = 0.4) with Eq. (11) implies a reduction

- 30%. A similar frictional stress is obtained from the slope of the

reloading curve with Eq. (13). Measurements on fifteen other fibers in this

specimen gave results very similar to those in Fig. 9, with a calculated

reduction of T in the range 20-40% during reverse sliding. The magnitudes of

the frictional stresses calculated from the slopes of the initial loading

curves (Eq. (4)) for these specimens fell within the range 2.7 MPa to 3.3 MPa.

The frictional stresses calculated from the peak load measurements

for 70 fibers using the Zwick instrument were T = 2.1 ± 1.5 MPa. These

stresses include the range of values obtained by the Nanoindenter, thus, for

the corresponding range of loading times, - 10 ms to 100 s, there does not

appear to be an influence of load rate on sliding resistance.

The heat treatment experiments indicate that bonding at the interface

occurs very rapidly upon exposure to air at 900 0-1000°C. Brennan6 has

observed that the thin layer of carbon at the interface disappears with

similar heat treatment. The present results support Brennan's suggestion that

the weak interfacial bonding in this composite is caused by the carbon

layer. The results also bear on the embrittlement that has been observed in

this composite when tested at high temperatures in air.6'10 Two mechanisms

have been suggested to account for the embrittlement. One is the rapid

oxidation and bonding at fibers behind a moving crack, and the other is an

increased frictional stress at high temperature. The difference is important

in predicting the high temperature toughness of the composite. The present
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results lend credence to the bonding argument, but increases in frictional

stress have also been measured.10 Further studies of the oxidation kinetics

are needed to distinguish which mechanism is dominant.

The question of whether the static friction stress exceeds the slid-

ing resistance cannot be answered with the present analysis and data. The

approximation i >> R used in the analysis of Section 4.0 is tantamount to

neglecting elastic strains at z > R, so that the displacements are not influ-

enced by the static frictional stress. The data would be influenced only in

the region of small z where a rigorous analysis to interpret the data is not

available.

Finally, it is noted that an estimate was made recently of the con-

tribution of Poisson's expansion of the fibers to measured frictional

stresses. 11 From experiments (with the same composite used here) in which

frictional stresses were measured by the indentation method in the presence of

applied transverse compressive stress, a coefficient of friction 0.01 was

obtained. Calculation of the average compressive strain in the region of

fiber that slipped during indentation allowed the normal stress at the inter-

face to be calculated (= 8 MPa), assuming that the fibers and matrix were

initially in intimate contact. These two results imply an additional fric-

tional stress AT = 0.1 MPa due to Poisson's contraction. This is small com-

pared with the total measured value , 2 MPa. Tensile strains in fibers that

bridge cracks during composite failure are of similar magnitude to the strains

in the indentation experiments. Therefore, the compressive nature of the

indentation experiment should not cause the measured frictional stress to

21
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differ significantly from the value appropriate to fiber pullout in tension

during cracking. This conclusion is consistent with independent measurements

of in tension, which agree well with the indentation measurements.
2
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APPENDIX A

Energy Changes with Growth of a Debond Crack

With the condition c >> R, strain energy changes in the matrix during

growth of a debond crack are negligible and we need consider only the strain

energy in the fiber at x s c, which is given by

UE = (R 2Ef/2) jc E2 (z)dz (Al)
0

Substitution of Eq. (3) into Eq. (Al) gives the result

U E = (F 2/2mR2Ef)(C - cI + c3/3 2 ) (A2)

and differentiation leads to

dUE/dc = F2/2,R2Ef(l- 2c/i + c 2/2) (A3)

The work done against frictional forces is

c
UF = 2JRr j u(z)dz (A4)

0

where u(z) is the displacement of the fiber at z. Integration of Eq. (3) and

substitution into Eq. (A4) gives
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Uf = (F 2/AR2 Ef)(c 2/21 - c 3/hi2) (A5)

and differentiation leads to

dUf/dc = (F 2 /-nR2Ef)(C/i - c 2Ai2) (A6)

The potential energy of the loading system is

U L =Fu(O) (A7)

* where u(O) is the fiber displacement at the surface. Substitution from Eq.

(5) folic -1 by differentiation yields

dU L/dz = (F 2 -R 2Ef)(1 - c/i) (A7)

Finally, the increase in surface energy is

dU r /dc = 4,r (A8)

where 2r is the fracture surface energy per unit area of interface.
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APPENDIX B

Estimate of Shear Stress at Interface at Onset of Sliding

A rough indication of the magnitude of shear stress at the interface

before sliding begins can be obtained from Mindlins solutions for a point

force applied to a half-space (this would be exact for a composite with fibers

and matrix of equal elastic moduli). If a force, F, is applied at the center

of a fiber of radius R the shear stress along the interface is

a = (3F/2iiR2)(z/R) 2/11 + (z/R) 215/2  (BI)

where z is the distance below the surface. The variation of axz with z/R is

plotted in Fig. BI. The onset of fiber sliding occurred at a force of 0.01 N

for the data in Fig. 2(A). With this force and with R = 8 um, the plot of

Fig. BI indicates that axz > over the range z/R ~ 0.3 to 2.3, i.e., over a

distance of 2R.
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FIGURE CAPTIONS

Fig. 1 (a) Schematic diagram of indentation experiment used to measure

interfacial sliding resistance. (b) Scanning electron micrograph of

fiber in SiC/lithium-alumino-silicate composite after indentation

with the triangular pyramid of the Nanoindenter instrument.

Fig. 2 (a) Force and displacement measurements obtained during indentation

of the fiber in Fig. 1(b). (b) Force and displacement measurements

obtained during indentation of a fiber in a specimen of the same

composite as in (a) but after heat treatment at I000°C in air for 10

min.

Fig. 3 Fiber sliding distances obtained by subtraction at the displacements

in Fig. 2(b), (i.e., uo) from the displacements in Fig. 2(a) (i.e.,

uT).

Fig. 4 Measurements of force as a function of time during indentation with

the Zwick instrument.

Fig. 5 (a) Schematic diagram showing sliding distance t, frictional

stresses, T, exerted by the matrix on the fiber during initial

loading and the distribution of compressive strain in the fiber.
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Fig. 6 (a) Schematic diagram of combined debonding and frictional sliding,

showing debond crack length, c, stresses applied by the matrix to the

section of fiber at z < c, and the distribution of compressive strain

in the fiber. Shaded area is fiber displacment, u.

Fig. 7 (a) Schematic diagram showing frictional stresses exerted by the

matrix on the fiber during unloading and the distribution of compres-

sive strain in the fiber. Shaded area is fiber displacement, u.

Fig. 8 (a) Schematic diagram showing frictional stresses exerted on the

fiber by the matrix during reloading and the distribution of compres-

sive strain in the fiber. Shaded area is fiber displacement, u.

Fig. 9 Comparison of data from Fig. 3 with theoretical analysis. Solid

curves are representations of Eq. (4) for initial loading, Eq. (10)

for unloading, and Eq. (12) for reloading.

Fig. B1 Variation of shear stress at fiber interface with depth below surface

for nonsliding fiber and equal elastic moduli in fiber and matrix.
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INTERFACES IN CERAMIC FIBER COMPOSITES

D.B. Marshall

Rockwell International Science Center
1049 Camino Dos Rios

Thousand Oaks, CA 91360

ABSTRACT

Fiber/matrix interface properties in frictionally bonded ceramic com-
posites are examined. Relations between the sliding resistance of the
interface and the mechanical properties of the composite are discussed.
Then measurements of interface sliding, obtained using an indentation
technique are presented. Experiments in the presence of transverse com-
pressive stress and measurements of reverse sliding provide further
insight into the nature of the interface. The range of composite prop-
erties for which the indentation method can be used to measure frictional
stresses is assessed.

I. INTRODUCTION

The nature of the interface between fibers and matrix is the most
critical factor in determining the mechanical properties of ceramic com-
posites. If the interface is strongly bonded, matrix cracks can cross
the interface and the composite fails in a brittle manner. However, if
the interface is weakly bonded, then debonding and fiber pullout can lead
to nonbrittle response of the composite, with a nonlinear stress-strain
curve, large strain to failure, and load-carrying capacity beyond the
peak load.

-7

The purpose of this paper is to quantify this notion of a "weak"
interface. For composites in which relative sliding of the fibers and
matrix is resisted only by frictional forces, fracture mechanics models
have been developed recently to analyze the influence of bridging fibers
on matrix crack growth.1 8 - Y0 Explicit relations have been obtained for
strength, toughness and conditions for transitions in failure mechanisms

t in terms of frictional sliding resistance. Some of these results will be
summarized in Section 2 to illustrate the role of the interface. In the
following sections some new direct measurements of the mechanical char-
acteristics of interfaces at individual fibers in a SiC/glass ceramic
composite, which has interfacial properties dominated by frictional
forces, will be presented.
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2. INFLUENCE OF INTERFACES ON MECHANICAL PROPERTIES Scince Center

2.1 Failure Mechanics

The tensile properties of unidirectionally reinforced brittle matrix

composites are determined by the response of the fibers during growth of
matrix cracks.11  This response is dictated by the properties of the
fiber/matrix interface. In strongly bonded systems, growth of the matrix

crack causes fiber failure at, or near, the crack plane, and the compos-
ite fails catastrophically. However, if the interface is sufficiently

weak, the fibers remain intact and bridge the matrix crack when it ex-
tends completely through the test section.12  Then matrix cracking is
followed by a region of nonlinear load increase and continued load sup-
port beyond the peak. The nonlinear load increase is associated with

additional, periodic matrix cracks and pullout of fibers from the resul-
tant blocks of matrix. The peak load is then determined by fiber fail-

ure, and continued load support results from pullout of the broken fibers
prior to separation. This noncatastrophic mode of failure has been

obtained in glass and glass-ceramics reinforced by carbon and SiC
fibers.1

- 7

2.2 Fracture Mechanics Analysis

The major influence of the reinforcing fibers on the growth of the
first matrix crack arises from fibers that remain intact across the crack

plane and restrain the opening of the crack surfaces. By modeling the

influence of the fibers as crack closure forces, the reduction of crack

tip stresses due to the fibers can be calculated.8 '9

An essential requirement for this analysis is knowledge of the force-

displacement relation for fiber pullout, which is determined by the prop-
erties of the fiber-matrix interface. In the case of a SiC/glass-ceramic
composite,* frictional sliding at the interface has been identified from
measurements of hysteresis in crack opening displacements during load

cycling experiments1 2 (other measurements are discussed in the following

sections).

For composites with frictionally bonded fibers that do not fail dur-

ing matrix cracking, the fracture mechanics analysis predicts that the

stress for matrix cracking is given by
-1 0

, - [6(1 - v2A f2E E2/R( - f)E23231/3 (1)

01~ ~ K' f Ef/( - )E

where T is the sliding frictional stress at the interface, Ko is the

toughness of the interface, Em, Ef and E. are the elastic moduli of the

matrix, fibers and composite, R is the fiber radius and f is the volume
fraction of fibers. It is noted that this stress is independent of the

crack size and is therefore a damage-tolerant property of the composite.
The requirement for this mode of failure is that the fiber strengths, S,

satisfy the relation Sf )o, l which, for given fiber strength defines a
maximum allowable value of -r.9

For larger values of r, fiber failure occurs at a location behind the

crack tip and failure of the composite is catastrophic. However, the

*United Technologies Research Center, lithium-alumino-silicate glass-

ceramic matrix (LASIII), with Nicalon fibers.
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limited zone of bridging fibers can lead to significant toughening of the
composite. In general the events leading to failure are dependent upon
the initial crack configuration (crack area and area of initially broken
fibers). Failure can begin with stable fiber fracture or matrix crack-
ing.6 However, for a wide range of initial conditions, the crack config-
uration at the point of unstable composite failure is that for which the
matrix crack growth and fiber failure conditions are satisfied simultane-
ously. In this case the strength is given by

9

a - (Ec/E m)[ + (Sf/a 1)
3 Ko(Ac)1/2 (2)

where c is the crack length. The strength in this case is sensitive to
pre-existing crack size and the effect of the fibers is to increase the
fracture toughness by the factor [I + (Sf/o) 3

]E c /Em "

These results indicate that, for composites that fail noncatastrophi-
cally, the matrix cracking stress increases with increasing T (Eq. (1)).
However, there is a maximum value of T that will allow this mode of
failure, defined by the condition Sf > al. For larger values of T fail-
ure is catastrophic and the toughening effect of the fibers diminishes as
T increases further. Therefore, it is evident that intermediate values
of T give optimum properties.

3. MEASUREMENT OF INTERFACE PROPERTIES COMPOSITE

3.1 Indentation Method

Direct measurement of properties of individual fiber/matrix inter-
faces in the SiC/glass-ceramic composite have been obtained using the
indentation method illustrated in Fig. 1.13 In this technique a Vickers
indenter is used to push on the end of a fiber, and the magnitude of the
interfacial stress that resists sliding is obtained from measurement of
the force, F, applied to the fiber, and the resultant displacement, u, of
the fiber surface below the matrix surface. In a composite with fric-
tional forces between the fibers and matrix, sliding begins at the speci-
men surface and extends a distance below the surface which is dependent
upon the magnitude of the applied force. If the sliding distance is
smaller than the specimen thickness (i.e., measured depression of the
fiber below the matrix is due to elastic compression of the fiber) but
large compared with the fiber radius, the frictional stress is given by

13

- F2 A 2uR3Ef (3)

and the sliding distance is given by

I = 2nR 2uEf/F (4)

During unloading, sliding occurs in the reverse sense so that the fiber
displacement after unloading is smaller than at the peak load (Section
3.3).

A simple method for obtaining the peak load displacement required in
Eqs. (3) and (4) is to allow the edges of the indenter to touch the
matrix as in Fig. 1. Then the displacement of the fiber is calculated
from measurements of dimensions parallel to the surface and the known
angle of the indenter;

u = (b - a) cot, (5)
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Fig. 1. (a) Schematic of indentation method used for measuring

matrix/fiber frictional stress. (b) Scanning electron

micrograph showing fiber indentation with Vickers pyramid.

Width of field 32 l m. (After Ref. 10).

where the dimensions a and b and the angle + are defined in Fig. 1(a)
(= 74° for the Vickers indenter). The force applied to the fiber is

obtained from the contact dimension, a, and the hardness, H, of the fiber

F = 2a2H (6)

Measurements of frictional stresses using this method in the SiC!t

glass-ceramc composite are shown in Fig. 2. Most values fall within the

U

range 'r = 2.1 * 1 MPa, and there is no systematic variation of t with the
fiber diameter. Several measurements fall in the range 0 to 15 MPa. The

fibers in this composite are not all perfectly aligned and the diameters

of individual fibers are not perfectly uniform. Therefore, these

relatively high values of could result from fiber misalignment below

the surface (ellipticity of the fiber cross sections due to misalignment

was not evident at the surface) or from relatively large irregularities

in fiber diameter below the surface.

It is of interest to examine the range of fiber sizes and frictional

stresses for which this method provides sensitive measurements of r.

(Changing t alters the contact dimension, a, when the indenter first {
touches the matrix; in the limits a * 0 and a * R the method becomes

inaccurate.) This range can be assessed by expressing t and i in terms

of the dimensions a and b rather than F and u (Eqs. (3) to (6));

l22Ef cot](a/R)/[(b/R)(R/a) - 1](b

h/R =[ix cot+ Ef/HH[(b/R)(R/a) - 1]/(a/R) (8)

Geometrical similarity is evident in the dimensions b, a, R and in Eqs.

(7) and (8); for a given material the ratios a/R and /R are fixed once

b/R is specified. This implies that the sensitivity of the technique is
not influenced by the fiber size (ecept for practical considerations of

heasurement resolution). Equations (7) and (8) are plotted in Fig. 3,
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Fig. 3. Plots showing the relation between contact geometry in the

indentation experiment and the properties of the composite.

for two values of b/R which bound the range usually used for measuring
z. The smaller value, b/R - 1, corresponds to the case where the edges
of the indenter just touch the matrix, whereas the larger value,
b/R - b, corresponds to the indenter faces touching the matrix in a con-
tinuous line (see Fig. 3). For the SiC/glass-ceramic composite, (Ef
200 GPa, H =13 CPa, tc~n 2 cot4 E fIH2 ) - 0.01 and incot4 Ef/H - 13.9), Fig.
3 gives aIR 0.30 and 0.34 and X/R = 140 for these values of b/R. Vari-
ation of T over 3 orders of magnitude would keep aIR within the range 0.2
to 0.8 and I/R within the range 1000 to 10. Therefore, the technique
would appear to be applicable to a wide range of microstructures.
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3.2 Effect of Normal Stress on Interface Sliding

The sliding resistance of a frictionally bonded interface should be
sensitive to stresses normal to the interface (such stresses in compos-
ites arise from thermal contraction mismatch between fibers and matrix).
A preliminary estimate of this sensitivity was obtained by measuring the
frictional stress in the SiC/glass-ceramic composite in the presence of
applied compressive stress. This was done by applying biaxial pressure
normal to the fibers with a fixture mounted on the table of the indenta-
tion equipment. The specimen was a rectangular beam (2 x 2 x 25 mm) with
the fibers parallel to the longest dimension. The beam was embedded in
epoxy (dimensions with epoxy 6 x 6 x 25 mm) to prevent crushing, and the
load was applied through four steel anvils placed against the sides of
the specimen). The resulting strain in the composite was measured with a
strain gage attached to one end of the beam and the friction measurements
were obtained by indenting fibers at the opposite end.

The results of measurements obtained at zero stress and at compres-
sive stress 300 MPa (transverse elastic modulus of composite 110 GPa,
strain 2 x 10-3) are summarized in Fig. 4. Care was taken in these ex-
periments to avoid systematic errors that might arise from spatial varia-
tions of t, or from bias in selecting fibers of particular diameters or
locations for testing. Using the micrometer table of the indenting equip-
ment, the fibers tested were those closest to the intersections of a rec-
tangular grid, with alternate rows being tested at zero stress and under
compression. The results in Fig. 4 indicate that the applied compression
caused the frictional stress to increase from T = 2.1 ± I MPa to Tn = 4.8
2.5 MPa. If Coulomb's friction law is assumed,

1 4

T = A + I10n (9)

where an is the normal stress at the interface and A is a constant, then

the friction coefficient would be i = 0.01.
SC35668
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Fig. 4. Distributions of frictional stresses in SiC/glass-ceramic
composite with and without transversely applied compressive
stress.
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When the force applied to the end of a fiber is decreased, sliding
occurs in the direction opposite to that during loading (Fig. 5). Conse-
quently, the displacement of the fiber surface below the matrix is smaller
after the indenter is removed than it is at the peak load. Measurement of
the relaxed displacement provides further insight into the nature of the
interface.
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Fig. 5. Distributions of compressive strains within the region of a

fiber that slides relative to the matrix.

The relative values of the fiber displacements at peak and zero loads
can be calculated from Fig. 5. The peak load displacement is obtained by
integration of the compressive strains, Ef(z), within the section of
fiber over which sliding occurs between the fiber and matrix

.
u = f Ef(z)dz (10)

0

The strain distribution, obtained from the relation dcf/dz = t/REf and
the boundary condition E (0) = F/nR2 Ef, is shown in Fig. 5(a) (this, with
Eq. (10) leads to Eq. (3j). During unloading, sliding begins in the
reverse sense at the fiber surface and extends a distance s (Fig. 5(b))
after complete unloading. The resultant strain distribution, defined by
the boundary condition Ef(O) - 0, is shown in Fig. 5(b). The reverse
sliding distance is s = 1/2, and the fiber displacement, u' (Eq. (10)) is
half of the peak load displacement, u.

This result is based on the assumption that elastic strains at z > I
are negligible and that the frictional stresses are equal during forward
and reverse sliding. However, if forward sliding degrades the interface,
resulting in a lower frictional stress T' during reverse sliding, or if
the sliding distance I is dictated by the length of a debond crack in an
initially bonded interface, then s > 2/2, and the displacement after un-

loading is smaller than u/2. For the case of unequal frictional stresses
during forward and reverse sliding, the displacement after unloading is
given by

15

u ' u / ( l - )( I
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The displacements at peak and zero loads were measured in the SiC/
glass-ceramic composite using the simple method shown in Fig. 6. After

loading a fiber with the Vickers pyramid the same fiber was loaded with a
Knoop indenter with the specimen rotated so that the diagonals of the two

indentations were at 450. Because the angle between opposite edges of
the Knoop indenter is larger than that for the Vickers, the edge of the

Knoop indenter touched the matrix before the tip touched the fiber (Fig.

6(a). Moreover, the elongated shape of the Knoop indenter allowed a mea-
surable impression to be left on the fiber surface with a relatively small
load and, consequently, a relatively small displacement of the fiber. For

the case shown in Fig. 6(b) the force applied to the fiber by the Knoop

indenter was < 0.2 of the original force applied to the Vickers indenter,
and the displacement caused by the Knoop indenter was < 0.02 of that

caused by the Vickers (analysis of reloading displacements will be pub-
lished elsewhere1 5 ). Therefore, measurement of the fiber displacement

at the peak load for the Knoop indenter, using Eq. (5) and the measured
Knoop contact dimensions (with 4, = 8b.25*), provides a good approximation

to the displacement after unloading the Vickers indenter.

SC37467

T_ T

VICKERS: PEAKLOAD UNLOAD KNOOP (a)

(b)

Fig. 6. Measurement of reverse sliding distance due to unloading:
(a) schematic of method, (b) scanning electron micrograph

of fiber indenter by a Vickers pyramid and then a Knoop

indenter.

Measurements of the ratios of the peak and zero load displacements
for 20 fibers in the SiC/glass-ceramic composite gave the result

u'/u = 0.46 * 0.03. This is close to the value 0.5 predicted for fric-
tional sliding of an unbonded interface. The result suggests that the

interface may degrade slightly on the first sliding, but Eq. (11)

indicatps that the reduction in the frictional stress is less than 10Z.
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4. DISCUSSION

The experiments described in Section 3 provide insight into the na-
ture of the fiber/matrix interface, as well as providing direct measure-

ments the frictional stress, T, which dictates strength, toughness and
failure mechanism of the composite (Eqs. (1) and (2)). The measurements

in the presence of applied transverse compression in the SiC/glass ceramic
composite suggest a friction coefficient p = 0.01. This value is lower
than that of graphite sliding on graphite p = 0.1 (Brennan has observed a
thin layer of carbon at the fiber/ matrix interface in this composite16 ).

This very low value of p suggests that a gap may exist at the interface,
in which case the true friction coefficient in Eq. (9) would be larger

than 0.01. Further experiments over a range of applied stresses would
clarify this question (stresses in the present experiments were limited by

flow of the epoxy used to prevent crushing). The reverse sliding experi-

ments indicate that there is not sufficient bonding at the interface to

influence the sliding, and that the frictional stress is similar during
forward and reverse sliding. This result has been confirmed by experi-
ments, to be reported elsewhere,1 5 in which forces and displacements were

measured at all stages of loading and unloading (and subsequent cyclic

loading).

The results of the experiments with transverse compression allow an
estimate to be made of the contribution of Poisson's expansion of the

fibers to measured frictional stresses. The force applied to the ends of

the fibers in these experiments (= 0.2N) caused average compressive strain
0.0015 over the region of fiber that underwent sliding, and average

transverse expansion = 0.0004. If the fiber and matrix were initially in

intimate contact, this would result in compressive stress = 8 MPa across
the interface. With the measured friction coefficient, 0.01, the resul-

tant additional frictional stress is TV = 0.1 MPa. This is small compared
with the total measured value, T = 2 MPa. Tensile strains in the fibers

that bridge cracks are of similar magnitude to the strains in the indenta-
tion experiments. Therefore, the compressive nature of the indentation

experiment should not cause the measured frictional stress to differ sig-
nificantly from the value appropriate to fiber pullout in tension during

cracking. This conclusion is consistent with independent measurements of

T in tension, which agree well with the indentation measurements.
1 3
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ABSTRACT

A stress intensity approach is used to analyze tensile failure of

brittle matrix composites that contain unidirectionally aligned fibers held in

place by friction. In general, failure may initiate either by growth of a

crack in the matrix, or by fracture of fibers that bridge the matrix crack.

Subsequently, these failure processes may continue either unstably or stably

with increasing applied stress. Solutions to the fracture mechanics analysis

are obtained numerically in normalized form, with one microstructural varia-

ble, the normalized fiber strength. The analysis defines transitions between

failure mechanisms and provides strength/crack-size relations for each mecha-

nism. Explicit relations are derived for the matrix cracking stress (noncata-

strophic failure mode), the condition for transition to a catastrophic failure

mode, and the fracture toughness in a region of catastrophic failure, in terms

of microstructural properties of the composite.
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1.0 INTRODUCTION

Two distinct tensile failure mechanisms are exhibited by brittle

materials that are reinforced with unidirectionally aligned fibers. 1'2 If the

fiber strength is sufficiently large, the first damage to occur during tensile

loading is a crack which extends completely through the matrix and remains

bridged by unbroken fibers over its entire area. Further loading causes

periodic matrix cracking, followed by failure of the composite at a stress

equal to the fiber-bundle fracture stress. This failure mechanism has been

observed in several ceramic composites (glass and glass ceramics reinforced by

SiC and carbon fibers) 3- 7 and in fiber reinforced cements.8 On the other

hand, if the fiber strength is lower than a critical value, fiber failure

occurs behind the tip of a growing crack. In that case matrix cracking causes

complete failure of the composite. However, the zone of unbroken fibers

behind the crack tip can lead to substantial toughening.

The critical stress for matrix cracking has been evaluated using

fracture mechanics for composites containing unbonded high-strength fibers in

which fiber/matrix sliding is resisted by friction and fiber failure does not

occur. Analyses using energy balance approaches have provided steady state

(i.e., large-crack) solutions, initially in the work of Aveston et al4'9 for

the limits of large and small frictional stresses and more recently by

Budiansky et al1 0 for intermediate values. Solutions for a range of initial

matrix crack sizes (nonsteady-state cracks) have also been obtained recently 11

for the case of small frictional stress, using a stress intensity approach in

5
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which a closure stress intensity factor due to the bridging fibers was

calculated. This solution confirms the existence of a steady state for large

cracks, provides the same solution as the energy balance analysis for the

steady-state critical stress, and defines a minimum initial matrix crack size

at which the steady state solution is a reasonable approximation.

In this paper the stress intensity approach is extended to analyze

matrix cracking in composites in which fiber failure accompanies matrix crack-

ing. The analysis provides a relation for the critical fiber strength at

which the change in failure mechanism occurs, in terms of the microstructural

properties of the composite. It also defines strength/crack-size relations

for composites in which the fiber strength is lower than the critical value.

For certain initial crack configurations, failure is preceded by stable matrix

crack growth or fiber failure with increasing applied load. Therefore, con-

sideration of crack stability is an important part of assessing the conditions

for failure.
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2.0 FRACTURE MECHANICS MODEL

2.1 Fracture Criteria

The present analysis is directed to the crack configuration of

Fig. 1, where continuous reinforcing fibers are aligned normal to the plane of

a penny shaped crack of radius c. (Results for straight cracks are very

similar and are summarized in Appendix I). The composite is loaded monoton-

ically with a remote uniform stress a_ normal to the crack plane. The fibers

within a distance d of the crack tip remain intact and bridge the crack,

whereas the remainder of the fibers, over an area of radius co, are broken and

do not contribute to bridging. Failure of the composite may initiate with

either matrix crack growth or fiber failure.

Fiber failure occurs when the stress of in the bridging fiber exceeds

the fiber strength, S. For composites in which the fibers and matrix are not

chemically bonded, sliding between the matrix and fibers is resisted by fric-

tion. Sliding occurs over a distance from the crack surface determined by the

length over which the interfacial shear stresses exceed the frictional stress

T. The tensile stress in a bridging fiber is maximum in the section of the

fiber between the crack surfaces and decreases linearly with distance along the

region that has slipped. In general, a statistical distribution of fiber

strengths would allow some fiber failure within the region embedded in the

matrix. However, the present calculations issume a single valued fiber strength

S, so that fiber failure occurs only between the crack surfaces and broken

fibers do not contribute to crack bridging. A single-valued fiber strength also
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implies that fiber failure occurs first at the trailing edge of the bridging

zone because the crack opening displacements always increase monotonically away

from the crack tip (this is confirmed in the calculations in Section 3.0).

The criterion for growth of the crack in the matrix is not as clear-

cut. Previously, both energy-balance and stress-intensity criteria have been

used.2,4,9-11 In certain cases these criteria give identical results (homoge-

neous materials, steady-state fully-bridged matrix cracks in composites17), but

in general the results differ (Section 5.0). The energy-balance crite, ion gives

a lower bound fracture stress whereas the stress intensity criterion represents

an upper bound. To remain consistent with our previous work the stress-

intensity criterion is used here. The condition for crack growth is that the

stress intensity factor associated with the stresses in the matrix near the

crack tip equal the critical value Ko for the unreinforced matrix. The

influence of the bridging fibers is to restrain the opening of the crack and,

consequently, cause a reduction in the crack tip stresses.

2.2 Crack Opening Displacements and Crack Tip Stresses

The relation between the applied load and the crack-tip stresses can be

evaluated by replacing the bridging section of each fiber by crack surface

tractions equal to the stress, of, in that section of fiber (Fig. 1). In a

continuum approximation (crack radius, c >> fiber spacing) this is equivalent to

applying a distribution of closure pressure, p(x) to the surface of the crack:

p(x) = f of(x) (1)
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where x represents the position on the crack surface and f is the volume frac-

tion of fibers. The influence of the remotely applied stress, a., on the crack

tip stress can be calculated by regarding the stress as a uniform opening

pressure acting over the crack surface. Therefore, the net crack surface

pressure is o - p(x), and a composite stress intensity factor can be defined

as12

K = 2(c/7)1/2 f p(X)XdX (2)
0 /1- X2

where X = x/c. If there is no sliding between the fibers and matrix ahead of

the crack tip, the composite stresses, oc, and the matrix and fiber stresses, m

and of are related by

om/Em = cc /Ec = of/Ef (3)

where

Ec = fEf + (1 - f)Em (4)

and E, Em and Ef are the Young's Moduli of the composite, the matrix, and the

fibers. Moreover, since the matrix and composite stress intensity factors scale

with the stresses, the stress intensity factor in the matrix, Km, is related to

K by
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Km = K Em/E c  (5)

A relation between the closure pressure p(x) and the crack opening

u(x); is provided by analysis of fiber pullout from the matrix
II

p ax /u(x) (x > co) (6a)

p(x)o

(x < co) (6b)

where -

R Em(1 - f) (7)

and R is the radius of the fibers. Equation (7) is a limiting solution for

large slip, obtained by neglecting the effect of interfacial shear stresses

beyond the region of fiber/matrix sliding. From the analysis of steady state

cracking by Budiansky et a110 it can be shown that this approximation is valid

for

< (K0/R
112 )(E/Ef) 1 /4g(f) (8)

where

g(f) = (1 - f)7/4/fl/2[2 log f + (1 - f)(3 - f)]3/ 4

60

J7569A/bw



01% Rockwell International
Science Center

The crack opening at a given location is determined by the entire

distribution of crack surface pressure
13

2 1 s Ia - p(t)]tdt
u(X) =4(1- - ,c r 1 ______ ds (9)

TiE J 9
X /s2 - X 0 /s2 - t2

where s and t are normalized position coordinates and v is Poisson's ratio for

the composite. Therefore calculation of the crack tip stresses requires

solution of Eqs. (6) and (9) followed by evaluation of the integral in

Eq. (2). An analytical solution, based on an assumed crack profile and valid

for small bridging zones, was obtained previously 2 (Appendix II). In the

present work numerical solutions are presented. For convenience, the equations

can be expressed in the normalized form

U(X) = 3(C/z.) 1 F(u) t dt ds (10)
X /s 2 - X2 0 /S 2 

- t2

and

K/Kc = 3w/C f F( U)XdX (11)
0 ,1 - X2

where

l -u X > CO

F(u) = (12)

1 X <C O
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and the dimensionless parameters z = ./On, C = C/Cn, CO = Co/cn, and

U = U/un are defined by*

2 2 2 1/3an = D3a2 K (1 - V2)/E) (13)

cn = (r/4)(9EKc/012(1 - 2)2/3 (14)

un = 2 , (15)

and Kc = KoEc/Em is the critical value of K for matrix crack growth (Eq. (5)

with Km = Ko). The stress in the bridging fibers is zf = E. U/f (Eqs. (1), (6)

and (15)) and the failure condition for the fibers is

Z. /UFC = fS/on (16)

*It is noted that Eqs. (10) and (11) can be further simplified to eliminate
the factor of 3 which appj,5s in both equatigns by defining the normaliza-
tion parameters on = an/ 3  and Cn = Cn/9 . However the present
normalization is retained for consistency with previous work (Refs. 2 and
11).
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3.0 NUMERICAL SOLUTIONS

Equations (10) and (12) were solved by iteration to self consistency in

the function U(X), after making the transformations t = s sin e and

s = X cosh ¢. The effective dimension of the integral equation was reduced by

evaluating the inner integral for all t at the beginning of each iteration,

and storing the results on a suitable grid. Then as the outer integral was

evaluated for each value of X0 , values of the inner integral were found by

interpolation over the stored values. This procedure, combined with integra-

tion using cubic splines, yielded well-behaved solutions (increasing grid

density always increased accuracy) and rapid covergence. A typical crack

profile is shown in Fig. 2.

After obtaining a self-consistent crack profile for each crack con-

figuration (i.e., given Co and C) and applied stress, the stress in the last

bridging fiber was calculated (Ef = /U(C- )/f) and the matrix stress

intensity factor was computed from Eq. (11). Then, from sets of solutions at

various E., C, and Co, the critical applied stress for matrix crack growth YK,

was evaluated for various C and Co, and the critical applied stress for fiber

failure, Es, was evaluated for various C, Co and Sf/an. The results are

exemplified in Fig. 3, where Ek, and ES are plotted as a function of the

unbridged crack radius for four representative values of the total crack size.

Some effects of changing the length of bridging zone or the crack

radius on the stresses at the crack tip and in the remaining bridging fibers

are readily deduced from Fig. 3. If the fiber furthest from the crack tip
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(i.e., at X = Co) is broken, with the applied stress and total crack size held

constant, the crack tip stresses always increase (i.e., 3zk/aColc < 0). This

result is expected intuitively because removal of a bridging fiber allows the

crack opening to increase. This also causes the stress in each remaining

fiber to increase. For initially fully-bridged cracks this increase is

sufficient to cause failure of the next fiber (i.e., ais/aCoIc < 0), but for

cracks with smaller bridging zones (i.e., larger Co) the increase is not

sufficient to cause further fiber failure (3is/aCoic > 0). If the crack

radius c is increased at constant co/c and applied stress, both the crack tip

stresses and the fiber stresses increase (i.e., is and Ek decrease).
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4.0 COMPOSITE FAILURE MECHANICS

Failure of the composite initiates when the applied stress exceeds

the smaller of Ek and zs. Subsequently, the failure process (at constant

applied stress) may involve either stable or unstable matrix cracking and/or

fiber failure, depending on the signs of the partial derivatives of Es and YK

with respect to Co and C. Consequently, the sequence of events leading to

complete failure of the composite depends on the initial crack configuration,

c and co and the fiber strength, Sf/o n .

4.1 Initially Fully-Bridged Crack

The critical applied stresses for matrix cracking (1K) and fiber

failure (Es) for fully bridged cracks (i.e., Co = 0) are plotted as a function

of crack size in Fig. 4. For large cracks, both critical stresses approach

steady-state values, Zk = 0.794 and Es = Sf/an" In general the first failure

event to occur is dependent upon both the fiber strength and the initial crack

length.

For fiber strengths, Sf/ n , larger than 0.794, unstable matrix crack

extension always occurs before fiber failure, but subsequent events are

dependent upon the initial crack size. If the initial crack is sufficiently

large that the stress Ek is smaller than the steady-state fiber failure stress

the crack grows unstably completely through the matrix without causing

fiber breakage. Further increase of applied load is then needed to cause

fiber failure. This is the mode of failure that leads to mutiple matrix
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cracking and large nonlinear strains before complete failure of the composite.

For smaller cracks, where Ek exceeds Sf/on, unstable fiber failure accompanies

matrix cracking after some unstable growth of the matrix crack. This causes

catastrophic failure of the composite at the applied stress Ek"

For smaller fiber strengths (Sf/on < 0.8) the curves for k and s

intersect at crack length C*. Initial cracks that are smaller than C* respond

in the same manner as the small cracks described above (unstable matrix crack

growth followed by fiber failure). For larger initial cracks, fiber failure

occurs first (is < Ek). Over most of the range of crack sizes and fiber

strengths fiber failure is unstable and is followed by matrix failure, but

over a small range of C and S stable fiber failure occurs at increasing

applied stress. These two responses can be inferred directly from Fig. 3, as

shown in Fig. 5. In Fig 5(a), where the stress for fiber failure (at co = 0)

is larger than the intersection stress z*, unstable fiber failure occurs

initially without matrix crack growth (path A-B). But, once fibers break

beyond position B, unstable matrix crack extension accompanies further fiber

failure and the strength of the composite is given by is. For fiber strengths

< 0.6 there is a small range of crack lengths for which the fiber failure

stress (at Co = 0) is smaller than E*, as shown in Fig. 5(b). In this case,

unstable fiber failure occurs along AB, but further load increase is required

to proceed along BD. At position D simultaneous matrix crack growth and fiber

fracture occur, so that the strength of the composite is given by E*.
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4.2 Cracks with Partial Bridging Zones

The general form of the counterpart of Fig. 4 for cracks with an ini-

tial area of broken fibers is shown schematically in Fig. 6. The introduction

of an unbridged area reduces the stress for matrix cracking. The magnitude of

the reduction decreases with increasing c/co (see Fig. 3). A maximum appears

in the function lk(c), but the limiting solution at large c/co is the same as

for the fully-bridged crack. The stress for fiber failure is reduced at large

c/co but is increased for c/co - 1.

Failure from a crack that initially has no bridging fibers (i.e.,

c = co) always begins with growth of the crack in the matrix. Moreover, the

growth is initially stable with increasing applied stress. In this case the

closure effect of the developing bridging zone outweighs the increased opening

effect of the applied load. If the fiber strength is smaller than S2 in Fig.

6 stable growth continues until the stress in the last bridging fiber exceeds

the fiber strength, whereupon both fiber failure and matrix crack growth

become unstable. This instability condition (C = C*, E. = z*) is defined by

the intersections of the curves Zk(C) and zs(C) in Fig. 6. On the other hand,

if the fiber strength exceeds S2, instability of the matrix crack occurs

before fiber failure, at stress E+ corresponding to the peak in the Ek(C)

curve. Provided the steady-state (i.e., C . w) fiber-failure stress is

smaller than z+ (i.e., fiber strength less than S4 in Fig. 6), fiber failure

occurs after some unstable matrix crack growth, and failure of the composite

is catastrophic at r = i+. However, if the fiber strength exceeds S4 the

67
J7569A/bw



0 Rockwell International
Science Center

fibers remain intact after the crack passes completely through the matrix and

the composite exhibits the high-strain, multiple-cracking failure mechanism.

Cracks with an initial bridging zone (i.e., C > Co) behave in a

similar manner provided the initial crack is smaller than C* and the inter-

section (C*, Y*) falls to the left of the peak in the matrix cracking stress

(i.e., S < S2). If the intersection falls to the right of the peak (i.e., S >

S2) and the initial crack lies between C+ and C* the crack extends unstably in

the matrix without precursor stable growth at Z = Zk(C), and is followed by

fiber failure if the steady state fiber failure stress is smaller than

Zk(C). This condition is always satisfied for S < S3 (i.e., catastrophic

failure of the composite), never satisfied for S > S4 (noncatastrophic

composite failure), and satisfied for certain initial crack lengths for S3 < S

< S4 .

If the initial crack size is larger than C* then fiber failure occurs

before matrix crack growth. The response in this region is similar to that of

initially fully bridged cracks, with fiber failure being unstable and followed

by matrix failure over most of the range of C and S, but with a limited region

where stable fiber failure precedes matrix failure.

Numerical solutions for the matrix cracking stress corresponding to

Fig. 6 are shown for various CO in Fig. 7 as a function of crack extension,

i.e., d/cn = C - Co . In this figure the left axis corresponds to a crack

that initially has no bridging fibers. Also plotted in Fig. 7 are the loci of

the intersection points (C*, z*) for various fiber strengths. A rapid transi-
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tion is evident between two types of zk(C) curve. At small Co (! 0.2) the

peak in the curve occurs very close to the left axis, so the extent of stable

matrix cracking for an initially unbridged crack is small. But, at large Co

( 0.2) the peak falls at larger C and at a stress very close to the large

crack length limit (Ek = 0.794). In this region the stable cracking is more

extensive and the strength of the composite containing an initially unbridged

crack is given by z*. The variation of the intersection stress Z* with total

crack length is shown in Fig. 8. The broken portions of the curves in Fig. 8

represent the second (left hand) intersections which occur for some of the

curves in Fig. 3.
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5.0 FRACTURE TOUGHNESS

In the present analysis the bridging effect of the fibers is viewed

as a crack shielding mechanism, in which the fibers reduce the crack tip

stresses and crack growth is dictated by a critical value of these local

stresses. The composite stress intensity factor (Eq. (2)) can be expressed as

K = Kc - Kp (17)

where Km = 2 oa(c/,) 1/2 is the applied stress intensity factor and Kp repre-

sents the shielding due to the fibers. The failure condition is taken as

K = Kc = EcKo/Em where K. is the intrinsic toughness of the composite without

shielding (i.e., zero strength fibers). Therefore the critical value of the

applied stress intensity factor, which is the quantity usually referred to as

the facture toughness, is

C = K + K (18)

c c+KP

and the relative toughness increment due to bridging is

K /Kc = (K_ - K )/K (19)
p c c c c
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The total increase in toughness, tKc, relative to the unreinforced matrix is

influenced by the relative moduli of the composite and matrix addition to the

bridging:

AKc = Km - K° = K (E /E -1) + K (20)
c o ocm p

The composite toughness is a material property only if KP is inde-

pendent of crack size. In this case the strength/crack-size relation is

1/ = Km 112/2 (21)

or, in normalized form,

Z C11 2 = (1/3)K/K c = (1 + K /K )/3 (22)c p c

It is clear from Figs. 4 and 7 that this relation does not hold in general.

Indeed, for initially fully bridged cracks (Fig. 4), the strength for large

pre-existing cracks is constant and is therefore the material property which

is independent of pre-existing defects. On the other hand, an initially

unbridged crack grows stably with increasing applied stress (i.e., increasing

K), a response that is characterized by a crack growth resistance curve (R-

curve) rather than a single-valued toughness.2

However, a constant toughness increment is obtained for the special

crack configuration with a bridging zone of length d*, for which fiber failure
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and matrix crack growth occur simultaneously (i.e., d* = c* - co in Fig. 6).

This is the crack configuration at the instability point on the crack growth

resistance curve for an initially unbridged crack. The constant toughness

increment is demonstrated by plotting the curves of Fig. 8 in logarithmic

coordinates (Fig. 9). The toughness increases, obtained by fitting Eq. (22)

to the curves in Fig. 9 are plotted as a function of normalized fiber strength

in Fig. 10.

Analytical solutions can also be obtained for the crack with

d = d*. One approximate solution, which is valid for small bridging zones,

was obtained previously 2 by substituting an assumed crack profile into Eq.

(10) (Appendix II). This solution predicted a crack-size-independent

toughness increase for this crack configuration:

K/Kc = 2(Sf/o n)3 (23)

The other solution derives from recent work of Rudiansky 14 who used a J-

integral approach, but employed an energy balance fracture criterion. The

analysis can be modified to incorporate the stress-intensity criterion used

here. The analysis begins by evaluating the J-integral for the path shown in

Fig. 11, 12

J= = Jtip + JP (24)

2
where JW = K ( - v2)/E c  (25)
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u d
Jp = 2 f p(u)du (26)

0

and ud is the crack opening at the end of the bridging zone. Budiansky set

Jtip = 21m(1 - f), where ym Ko2(1 - V2)/2Em is the fracture surface energy of

the unreinforced matrix, to obtain

2
K K0

2 (1 - f)Ec/Em + JpEc/(l - v2) (27)

If instead we evaluate Jtip for the circular path shown, 12 taking into account

the stress in the matrix and fibers (with corresponding stress intensity

factors Km and Kf) we get

Jtip = Km2(1 v2)(1 - f)/Em + Kf2(1 - v2)f/Ef (28)

= Km2(1 - 2)Ec/Em 2  (29)

Then setting Km = Ko as the condition for crack growth and combining Eqs.

(24)-(25) and (29) yields

K 2 = Ko2Ec2 /Em2 + JpEc/(l - V2) (30)

Thus, the predictions resulting from the energy balance and stress intensity

criteria differ by a factor Em (1 - f)/Ec in the term that derives from
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Jtip" Equation (30) can be expressed alternatively in terms of Kp (using Eq.

(19)):

Kp/K c  11 + Em2Jp/(1 _ v2)E K0  1/2 1 (31)

Equation (31) holds for the general crack configuration, but evaluation of Jp

(from Eq. (26)) requires solution of Eq. (10) for the crack opening dis-

placements to obtain ud. However, for the crack with d = d* a straightforward

analytical solution is obtained because ud is the displacement at which fiber

failure occurs, given by Eq. (6a) with P(ud) = S. In this case Eq. (31)

becomes

Kp/Kc = [1 + 4(Sf/on)3 -1 (32)

For small bridging zones (i.e., 4(Sf/an) 3 << 1) Eq. (32) reduces to the

approximate solution of Eq. (23). The analytical solution is plotted in Fig.

10; the results agree well with the numerical computations.
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6.0 DISCUSSION

Normalization of the crack opening and stress intensity equations in

the forms of Eqs. (10)-(12) has enabled the mechanics of failure for unbonded

composites to be examined with only one material or microstructural variable -

the normalized fiber strength, Sf/on . The analysis yields strength/crack size

relations for several failure mechanisms (Figs. 4 and 7), and defines condi-

tions for transitions between mechanisms. Relations between these quantities

and microstructural properties of specific composites are obtained by evalua-

tion of the normalization parameters defined in Eqs. (7), (13) and (14).

6.1 Transitions in Failure Mechanisms

The most important failure mechanism transition is from the "high-

strength" fiber behavior, which involves periodic matrix cracking followed by

fiber failure at a higher applied load (and consequently a large strain to

failure), to the "lower strength" behavior where fiber failure accompanies

matrix cracking and failure is catastrophic. This transition occurs at fiber

strengths between S3 and S4 , illustrated in Fig. 6, and plotted as a function

of the unbridged crack size in Fig. 12. Fiber strengths larger than S4 always

give rise to the noncatastrophic failure mechanism, whereas fiber strengths

smaller than S3 always lead to catastrophic failure. For fiber strengths

between S3 and S4, either failure mechanism can occur, depending on the total

crack size (with large c/cn favoring noncatastrophic failure). For
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co/cm ? 0.5, S3 and S4 are almost identical, but at smaller values of co/cm

the two strengths diverge.

The failure mechanisms for specific composites can be conveniently

predicted from Fig. 12 by evaluating the material parameter Sf/on (Eqs. (7)

and (13)):

[f/ 53R f(1 - f)Em 3 1/3 (3
n 12Ko2(1 - V2)EfEcJ

For example, in a composite composed of a glass-ceramic matrix with unidirec-

tionally aligned SiC fibers,2'3 the following microstructural parameters have

been measured: 5'15 Ko = 2 MPam1
/2 , t = 2 MPa, R = 8 pm, S = 1 GPa, f = 0.5,

Ef = 200 GPa, Em = 70 GPa. Substitution of these values into Eq. (33) gives

Sf/on 1.5 ± 0.2. This value falls within the field of noncatastrophic

failure (in Fig. 12) for 0.02 s Co/Cn s 2. Moreover, for Co/C n < 0.02 the

fiber strength is in the transition range S2 < S < S4 . Comparison with Fig. 4

indicates that, even for a fully bridged crack (CO = 0), the failure is

noncatastrophic for this value of Sf/an provided the total crack length C/Cn

exceeds = 0.03. The absolute crack dimensions corresponding to these bounds

are obtained by expressing Cn in terms of microstructural parameters (Eqs. (7)

and (14)):
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c = (14)[ K 0R(l - f)E 2/3 (4Cn (9 /4) 02{ 2)f2EJ] (34)
n ~12T(1 -v2 f2Ef

With the measured parameters for this composite Eq. (34) gives cn = 300 wm.

Therefore, the small-crack limit corresponds to a total crack size c = 10 Wm

and the large-crack limit to an unbridged crack size co  600 um. Flaws in

this composite are expected to fall within this range; the average fiber

spacing is larger than the lower limit but more than an order of magnitude

smaller than the upper limit. Therefore the nonctastrophic mode of failure is

expected, consistent with experimental observations. 5 However, it would, in

principle, be possible to increase CO and cross into the region of

catastrophic failure by cutting a large saw notch or by introducing a large

processing defect. In practice this transition is generally not observed

because such unidirectionally reinforced composites are weak in shear loading

and large notches cause failure by splitting parallel to the fibers rather

than by cracking normal to them. However, there is a reported instance in a

similar composite (carbon-reinforced glass) where splitting was inhibited by

using a circumferentially notched test specimen and the transition to the

catastrophic failure mode was apparently observed.
7

The influences of microstructural properties on failure mechanisms

are readily deduced from Eq. (33). Noncatastrophic failure is most likely in

composites with large values of Sf/on, i.e., large S, R and Em, and small T,

Ko and Ef. The influence of the volume fraction of fibers is dependent on the

ratio Ef/Em. Increasing f causes Sf/on to increase for Ef/Em < (1 - f)/f.
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6.2 Noncatastrophic Failure Mechanism

Within the region of noncatastrophic failure the first damage to

occur is the matrix cracking. The stress for matrix cracking can be dependent

upon crack length at small c/cn, but at large c/cn it approaches a lower

bound, 0/on = 0.794, independent of crack size. In terms of specific micro-

structural properties, this steady state stress becomes (Eqs. (7), (13) and

(16)

[6(1 - v2 )K2_f2EfE 2  1/3
R(1 - f)E m

Comparison of Eqs. (33) and (35) indicates that, with the exception of the

volume fraction of fibers, any microstructural change that increases the

matrix cracking stress also makes the transition to the catastrophic failure

mode more likely. Increasing f always causes the matrix cracking stress to

increase but can cause Sf/on either to increase or to decrease depending on

the value of Ef/Em.

The strength of the composite in this region is higher than the

matrix cracking stress, and is dictated by fiber failure after the matrix

crack has extended completely through the composite.
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6.3 Catastrophic Failure Mechanism

The mechanism of catastrophic failure is dependent on the initial

crack configuration. Failure of composites containing large fully-bridged

cracks is controlled by the fracture of bridging fibers, and the strength is

dictated by the product of the fiber strength and volume fraction, Sf. On the

other hand, failure of composites containing cracks with substantial areas of

broken or missing fibers involves stable matrix crack growth at increasing

applied stress (described by a crack growth resistance curve), with

instability occurring when the crack develops a bridging zone with critizal

size, d = d*. The fracture toughness of the composite at the instability

point is (Eqs. (20) and (32))

K =/Ko  (E c/Em )1 + 4(Sf/o) 31 2 (36)

where Sf/on is given in terms of microstructural properties by Eq. (33).

The critical zone size d*, is of interest, for this is a parameter

that could be measured. In general, d* is dependent upon both the total crack

size and the normalized fiber strength (Fig. 7). However, for large cracks,

d* becomes independent of crack size. This limiting value is plotted in Fig.

13. For small fiber strengths the limiting zone size is approximately

d*/c n = 0.5 (Sf/on)4 (37)
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in agreement with the previous approximate analybical solution (Appendix

II). At larger fiber strengths the limiting zone size is smaller than

predicted by the analytical approximation (Fig. 13). Comparison of Eqs. (36)

and (37) indicates that there is a direct relation between the normalized

limiting zone size and the corresponding toughness increment.

Equations (36) and (33) indicate that the toughness is increased by

increasing S and R or decreasing - and Ko . The influence of these parameters

on AKc is opposite to their influence on the stress for steady state matrix

cracking in the noncatastrophic failure mode. This dependence arises because

any microstructural change that decreases an leads to a smaller fiber bridging

zone (Eq. (37)) and thus a smaller toughness increment due to bridging. As a

result, there are optimum values of microstructural properties to give either

maximum toughness of the composite in the region of catastrophic failure or

maximum matrix cracking stress in the region of noncatastrophic failure. The

optimum combination of properties exists at the transition condition defined

by Eq. (33) and Fig. 12.

The inverse relation between Kw and K in Eq. (36) warrants qualifi-
c q.(60arnsqaii

cation. The baseline matrix toughness Ko is the toughness in the absence of

any crack shielding mechanisms, i.e., it is the intrinsic matrix toughness, or

the critical stress intensity factor locally at the crack tip required to

cause crack extension. Therefore, the measured matrix toughness in the

absence of reinforcing fibers could be increased by introducing a second

shielding mechanism, such as transformation toughening, without changing Ko

and hence without decreasing AKc. In fact, it has recently been suggested

80
J7569A/bw



0 % Rockwell International
Science Center

that synergistic effects with multiple crack shielding mechanisms could

increase the toughening increment due to each individual mechanism.16

Finally, the influence of elastic modulus and fiber volume fraction

on K7 are dependent upon the values of the other parameters. This dependence
c

is evaluated by rewriting Eq. (36) (using Eq. (33)):

K/Ko 1 + f(Ef/Em - )]2 + Ef)E 112

[[1 fE - S (38)

For composites in which the toughening due to fiber bridging is small (i.e.,

second term in Eq. (37) small) the toughness of the composite increases with

increasing Ef/Em. However, if the toughening due to bridging is large the

dependence on Ef/Em is reversed. Increasing f causes KC to increase for bothc

high and low toughness composites, provided f < 0.5 and Ef/Em > 1. However,

if Ef/Em < 1 the opposite variation occurs for composites with low toughness.
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APPENDIX I

ANALYSIS FOR STRAIGHT CRACKS

Analysis of straight cracks is the same as for the penny cracks

considered in the text, except that the equations for the crack opening dis-

placement and the stress intensity factor (Eqs. (10) and (11)) become

U(X) = 3(C/E.) 1 s j s F(U)dt ds (Al)
X /S 2 - X2 U /S

2 - t2

and

iF(U)dX
K/Kc = 2z C1 2 112 ____ (A2)

0 /1 - X2

The solutions of these equations are very similar to those of Eqs.

(10) and (11), so that the description of the mechanics of failure (Sec-

tion 4.0) is the same as for penny cracks. However the magnitudes of corres-

ponding strengths at small crack sizes differ slightly, as summarized in Figs.

Al and A2 which correspond to Figs. 7 and 12.

82
J7569A/bw



Rockwell International
Science Center

APPENDIX II

APPROXIMATE ANALYTICAL SOLUTION

Some of the results in this paper were foreshadowed by an approximate

analytical solution to Eqs. (10 and (11), obtained by assuming an approximate

form for the crack profile. 2 The profile was taken as the solution of Eq. (9)

for a crack subject to uniform stress, but with the magnitude of the opening

governed by the net stress intensity factor:

u(X) = 2(1 - v2)Kcl/ 2(1 - X2)112/ET /112  (BI)

This approximation is expected to be reasonable for small bridging zones

(i.e., small Sf/on), but it is expected to yield an overestimate of the

closure pressure for large bridging zones. The stress intensity factor for a

crack with fiber closure tractions over a zone of length d was calculated from

Eq. (11) with the crack surface pressure, F(U) = 1 - /tU, dictated by Eq. (B):

K = 3z Ci/2 _ 2(K/K )112C3/4 (d/c)3/4 (2 - d/c)3/ 4  (B2)
Kc

The applied stress, r., required to cause matrix crack growth was then evalu-

ated from Eq. (B2) by setting K = Kc. The results, plotted in the same form

as Fig. 7, were very similar to the numerical solutions, but with stresses

generally about 20% higher. The condition at which both fiber failure and

matrix cracking occur simultaneously was also obtained by calculating the
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critical bridging zone size d* from Eqs. (6) and (B) with p(x) = Sf at

x = c - d*:

d* (2 - d- )  (f~Cn) B3
c , -On( 3)

n c
In the limit of large cracks (i.e., (Lj - < 1), Eq. (B3) becomes

an c

d*/cn = (Sf/ n)4/2 (B4)

The corresponding stress intensity factor due to the bridging zone, obtained

from the second term of Eq. (B2) with d = d* from Eq. (B3) is

Kp/Kc = 2(Sf/on)3  (B5)

Since Kp is independent of crack length, the closure effect of the fibers

represents an increase in fracture toughness, AKc = Kp, for this crack

configuration.
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FIGURE CAPTIONS

Fig. 1 Schematic of crack configuration analyzed in Sections 2.0 to 5.0.

Fig. 2 Typical solution for the crack opening displacement and the corres-
ponding closure pressure due to bridging fibers. Total crack radius
= c/cn = 1.0, unbridged radius = co/cn = 0.156, applied stress O/On =
0.9

Fig. 3 Solutions for the applied stresses required to cause matrix crack
growth, Ek' and fiber failure, st for various crack configurations
and fiber strengths. The left axis of each plot represents a fully
bridged crack whereas the right axis represents an unbridged crack.
Solutions for zs are plotted for fiber strengths Sf/a n at intervalsof 0.1.

Fig. 4 Solution for zk and i for fully bridged matrix cracks (c = 0 in
Fig. 3) plotted as a function of crack length.

Fig. 5 Examples of k and sfcurves from Fig. 3, illustrating two different
sequences of ailure-from fully-bridged cracks: (A) unstable fiber
fracture (A , B) followed by simultaneous matrix and fiber failure;
(B) unstable fiber fracture (A - B) followed by stable fiber fracture
(B . D) then simultaneous matrix and fiber failure.

Fig. 6 Schematic of the variations of Ek and Es (for several values of fiber
strength, S) with total crack length for a crack with an unbridged
zone of radius Co .

Fig. 7 Numerical solutions for Ek corresponding to Fig. 6, but plotted as a
function of (C - C ), i.e., the length of bridging zone, so that the
left axis represents a completely unbridged crack of length Co . The
set of broken curves represent the intersections, E* = zs = Ek,
depicted in Fig. 6 for various fiber strengths.

Fig. 8 Plot of the intersection stress E* as a function of total crack

length.

Fig. 9 Plot of results from Fig. 8 in logarithmic coordinates.
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Fig. 10 Toughness increase for crack with critical bridging zone of length
d*. Round symbols represent numerical solutions obtained by fitting
Eq. (22) to the results of Fig. 9. Solid curve represents the
analytical solution, Eq. (32).

Fig. 11 J-integral path used for analytical solution in Section 5.0.

Fig. 12 Variation of the critical fiber stresses S3 and S4 (represented
schematically in Fig. 6) with unbridged crack length co/c n . This
plot defines the transition between catastropic and noncatastropic
failure modes.

Fig. 13 Bridging zone size d* for simultaneous fiber failure and matrix
cracking at large C.

Fig. Al Numerical solutions for straight crack corresponding to Fig. 7.

Fig. A2 Numerical solutions for straight crack corresponding to Fig. 12.
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ABSTRACT

Recent developments in understanding failure mechanisms and in
applying fracture mechanics to ceramic fiber composites are reviewed.
Direct observations of failure mechanisms in a uniaxially reinforced
SiC/glass-ceramic composite are first summarized, thereby establishing a
basis for a fracture mechanics analysis. The key observation is that
frictional forces exerted by the fibers on the matrix oppose the opening
of matrix cracks. The fracture mechanics analysis defines transitions
between several failure mechanisms, provides strength/crack-size rela-
tions for each mechanism, and relates strength and/or toughness to micro-
structural properties of the composite. Implications of the results for
designing composites with optimum properties are discussed.

1.0 INTRODUCTION

The resistance of brittle materials to tensile failure can be en-
hanced considerably by reinforcing with high strength fibers. The most

dramatic improvements in properties have been achieved in composites that
contain continuous unbonded fibers aligned parallel to the tensile axis.
This class of composites includes glasses and glass-ceramics reinforced
by carbon

l- 4 and SiC fibers.
5- 7

Mechanisms of failure in these composites and in monolithic ceramics
can differ substantially. Monolithic ceramics generally fail by the
growth of a single crack on a plane normal to the maximum principal
stress. Fiber composites, on the other hand, can fail by a variety of
mechanisms, dependent upon the applied stress state and the geometry and
microstructural characteristics of the composite. 8 Moreover, mechanisms
that do not involve failure by growth of a single crack have been ob-
served.8 In that case fracture toughness cannot be defined in the usual
sense.

Despite these complications, fracture mechanics can be applied to
analyze failure of fiber composites, provided that the detailed mecha-
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nisms of failure are identified for each combination of composite and
stress state. Such analyses provide insight into failure processes and
allow definition of alternative material properties which characterize
the mechanical response. Furthermore, by relating these properties to
microstructural parameters, the fracture mechanics analyses provide a
means of designing optimum microstructures and anticipating microstruc-
tural changes that lead to changes in failure mechanisms. ,9,10

The purpose of the present paper is to review recent progress&-1 1 in

understanding failure mechanisms and in applying fracture mechanics to
ceramic composites. Specifically, direct observations of the failure
process in a composite material* consisting of approximately 50% uniaxi-
ally aligned SiC fibers in a lithium-alumino-silicate (LAS) glass-ceramic
matrix are first described. These observations are then used as a basis
for developing a fracture mechanics analysis which provides further in-
sight into the mechanics of failure as well as relating strength, tough-
ness, and changes in failure mechanism to microstructural properties.

2.0 FAILURE MECHANISMS

The general features of room-temperature load/deflection curves for
flexure or tension tests in the SiC/LAS composite are shown in Fig. 1.8

In both cases an initial linear elastic region is followed by nonlinear
load increase to a maximum, then a continuous load decrease. The non-
catastrophic decrease in load gives these materials the appearance of
being very "tough." Similar curves have been reported for flexure tests
of a SiC/magnesium-alumino-silicate glass ceramic 7 and carbon-fiber/
glass-ceramic composites.2

400 600

Z

200- 300

IJ 0

0 0.25 0.5

DEFLECTION. mm

Fig. I Load-deflection curve for a SiC/glass ceramic composite.

Direct observation of the tensile surfaces during loading has

allowed the damage processes corresponding to eac- -tion of the load/
deflection curve to be identified. 8 In both flexure and tension tests

*United Technologies Research Center
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the onset of nonlinear deflection occurs at a stress of 300 MPa and
coincides with the formation of a single matrix crack. In a tension test
this crack passes completely through the central test section, and the
applied load is supported entirely by the intact fibers bridging the
crack. Further small increase of load causes formation of multiple
regularly spaced cracks in the matrix throughout the central test area
(Fig. 2). The spacing of the cracks is about 400 . Most of the addi-
tional deflection after the onset of matrix cracking is due to pull out
of the fibers from the matrix and the associated increase in crack open-
ing. The peak load ( -500 MPa) is dictated by fiber failure. At deflec-
tions beyond the peak, the opening of one of the cracks becomes very
large, and final separation involves the pulling of broken fibers through
the blocks of matrix formed by multiple cracking.

Fig. 2 Tensile surface of a flexure specimen, loaded beyond the linear

region of the load-deflection curve. Width of field 1.5 m.
Brightly reflecting regions are polished cross sections of
fibers, grey regions are the matrix. After Ref. 8.

In a flexure test the matrix cracks that form at the onset of non-
linear deflection penetrate only to about the midplane of the beam.
These cracks destroy the macroscopic uniformity of the beam causing re-
distribution of stresses. In particular the neutral axis moves towards
the compressive surface, resulting in an enhancement of compressive
stress. Further loading increases the opening of the cracks. However,
the peak load is determined by a kinking instability on the compressive
side of the beam. The importance of the stress redistribution was illus-
trated by a comparison of the compressive strength calculated from beam
bending formulae (780 MPa) with the strength indicated by a strain gauge
on the compressive surface (1330 M a).8 Thus, the peak load-bearing
capacity in flexure is dictated by a combination of tensile and compres-
sive failure mechanisms.
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At higher temperatures (- 1000C) a change in failure mechanism has
been observed. 11 Matrix cracking is accompanied by fiber fracture, re-
sulting in catastrophic failure of the composite and loss of the capacity
to support high strains to failure. Fracture surface observations indi-

cate that the majority of fibers extend relatively short distances out of
the surfaces, thus implying that fiber failure occurs behind the crack
tip (fiber failure coincident with, or ahead of the crack tip would yield
either no fiber pullout or equal numbers of protruding fibers and holes).

3.0 INFLUENCE OF FIBERS ON MATRIX CRACKING

The tensile stress at which the first matrix crack forms is an im-

portant characteristic of the composite. If all of the fibers bridging
the matrix crack remain intact, matrix fracture signifies the onset of
permanent damage, the loss of protection provided by the matrix against
corrosion and oxidation of the fibers, and the likelihood of an enhanced
susceptibility to degradation due to cyclic loading. On the other hand,
if fiber failure accompanies matrix cracking, catastrophic failure
ensues.

Separation of the surfaces of a matrix crack that is bridged by uni-
axially aligned reinforcing fibers requires some sliding of the matrix
over the fibers. In general, this process entails debonding at the
fiber/matrix interface followed by sliding against frictional forces.
However, in composites that exhibit the failure mechanisms discussed in
the previous section there is no chemical bond between the fibers and
matrix. 8 A direct indication of the role of frictional forces in such
composites was obtained from observations of matrix cracks during load
cycling. Measurements of the crack opening displacements (Fig. 3) indi-
cated that the separations of the crack surfaces were larger during un-
loading than during loading. These observations imply that the fibers

6
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0 0.005 0.01

STRAIN ON COMPRESSION SURFACE

Fig. 3 Plot of separation of crack surfaces in tensile surface of
flexure beam during loading, unloading and reloading.
After Ref. 8.
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exert frictional forces on the matrix, which tend to oppose crack closure
during unloading and resist crack opening during loading. Therefore,
frictional forces must play an important role in inhibiting the initial
extension of the first crack through the matrix.

4.0 FRACTURE MECHANICS ANALYSIS OF MATRIX CRACKING

4.1 Formulation of Problem

The influence of the fibers on the stress for matrix cracking can be

evaluated using a stress intensity approach, in which the frictional
forces that resist sliding are viewed as crack closure tractions. 9 The
influence of these tractions is evaluated by imagining the crack to be

formed in two steps. First, all of the bonds across the prospective
crack plane (in the fibers as well as the matrix) are cut and stress o0
is applied (Fig. 4a), causing the crack to open. In the second step
tractions, T, are applied to the end of each fiber that lies within a
distance d of the crack tip. The magnitude of T is chosen so that the

t
om

Fig. 4 Hypothetical steps used to evaluate the closure

effect of fibers bridging a matrix crack.

fiber ends displace relative to the matrix and allow the fibers to be
rejoined (Fig. 4b). In a continuum approximation (c >> fiber spacing),
this procedure is equivalent to applying a distribution of closing
pressure p(x) to the crack surfaces:

p(x) - T(x) f (x > c-d) (1)
0 (x < c-d)
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where x represents the position on the crack surface (Fig. 4b) and f is
the volume fraction of fibers. The closure induced by the pressure p(x)

opposes the opening due to the applied stress c.. The influence of the

applied stress on the crack tip stress intensity can be evaluated by re-

garding the stresses as a uniform opening pressure, o, acting at the

crack surfaces. Therefore, with the crack surfaces being subject to net

pressure (a.;-p(x)), a composite stress intensity factor can be defined as
(for a penny crack* embedded in an infinite medium):

K 2(c/)
1 / 2 1 (a-p(X)]XdXK (cn (2)

0 V _X--
where X = x/c.

The stress intensity K characterizes the composite stress and strain
fields in the region immediately ahead of the matrix crack. In this re-
gion, the matrix and fiber strains are expected to remain compatible,
whereupon the stresses exhibit the usual composite relationship

• /Em - c/E (3a)
-mm

where am is the matrix stress and E is the composite modulus,

E = Em(l-f) + Eff

with Em and Ef referring to the Young's modulus of the matrix and fibers,

respectively. The matrix and composite stress intensities scale with the
stresses, so that

K - K !!E/E M) (3b)

where Km is the stress intensity factor in the matrix. The condition for

equilibrium crack growth (in the absence of environmental effects) is
given by setting K. equal to the critical stress intensity factor, Ko,
for the matrix. Therefore, the criterion for crack growth can be ex-

pressed in terms of K as;

K =c Z(E/EM) . (4)

Thus, Eqs. (2) and (4) relate the matrix cracking condition to the

applied stress a,.

Evaluation of K in Eq. (2) requires a separate calculation of the
pressure distribution p(x). Analysis of fiber pullout from the matrix

9

reveals that the closure pressure is related to the crack opening, u, at

a given location by

p 2[uif 2Ef(I + n)/R]
1/ 2  (5)

where r = Eff/Em(l-f) , R is the fiber radius, and T is the sliding fric-

tional stress at the interface. However, the crack opening at a given

position is determined by the entire distribution of surface tractions.
For a penny crack,

13

S -nthe analysis for multiple matrix cracking,
9 penny cracks and straight

cracks yielded almost identical results. Therefore, for convenience,

only penny cracks are considered explicitly in this paper.
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4-v 2)c 1 s Ic.-p(t)]tdt
(IE f f ds (6)

x 7 o

where s and t are normalized position coordinates and v is the Poisson's
ratio of the composite. Therefore, analysis of matrix cracking by the
stress intensity approach requires solution of Eqs. (5) and (6) to obtain
the crack surface tractions, followed by evaluation of the integral in
Eq. (2) and combination with the crack growth criterion, Eq. (4).

4.2 Closure Effect of Fibers

Rigorous solutions for u(X) from Eqs. (5) and (6) can only be ob-
tained numerically. However, an analytical solution that closely resem-
bles the exact numerical result 9 can be obtained by assuming an approxi-
mate form for the crack profile. This solution has the attraction that
the final result can be expressed in simple mathematical form. The ap-
proximate crack profile is taken as the solution of Eq. (6) for a crack
subject to uniform pressure, with the magnitude of the opening governed
by the net stress intensity factor K (Eq. 2);

C)=21-2 1/2 2 21/2 1/2
u(x) - 2(l - v)K c/(1 - x2/c2) /L (7)

The actual pressure distribution is obtained by combining Eqs. (5) and
(7) to give

p(x) = [aK c 1/2(1 - x 2 /c2)1/2]1/2 (x > c - d) (8a)

where

v2) 2fl 1/2
a 8(1 - v )f 2 E(1 + ?1)/E R n (8b)

With this pressure distribution, the net stress intensity factor

(Eq. (2)) is given by

K K, - Kp (9a)

where

K - Oc c 1 / 2  (9b)

K - (16a/9n) 1/2 K1/ 2 d 3 /4 (2 -d/c) 3 / 4  (9c)
P

and Q - 2//it . The terms K. and K represent the contributions to the

crack tip stress intensity due to the applied load and the fiber closure
tractions, respectively.

4.3 Multiple Matrix Cracking

If all of the fibers that intersect the crack plane remain intact
the traction-induced stress intensity (Eq. (9c)) becomes

K = (16a/9 ) 1 /2 K 1/2 c3 /4  (10)

Thus, the closure effect of the fibers increases indefinitely with crack
length. The mechanics of crack growth is most conveniently investigated
by combining Eqs. (9) and (10), setting K = K , and solving for o to
obtain an equilibrium-stress/crack-size function;

=c - /Qc 1/2 + (16aK c/9i02]'/ 2 c 1/ 4  (11)ac c
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This function can be expressed conveniently in normalized form,

c /c - (1/3)(c/c )1/2 + (2/3)(c/c 1/4 (c 4 c) , (12)

where

cm = (9W c /4a)2/3 (13a)

and
2 1/3

o = (3/)(agc /9n) (13b)

Equation (12) provides a relation between normalized stress and crack
length parameters, cc/a m and c/cm, without explicit reference to material
and microstructural properties (these properties enter only in their in-
fluence on the normalizing factors cm and om). Thus, the mechanics of
crack growth may be examined independently of the specific composite
system.

Further progress requires that large and small cracks be distin-

guished. Large cracks must experience a crack opening which asymptotic-
ally approaches (but cannot exceed) the equilibrium separation of the
completely failed matrix (i.e., two half planes connected by fibers).
However, the crack opening expressed by Eq. (7) is unbounded at large c.
Therefore, the preceding analysis is used only for cracks smaller than a
transition crack length, co, defined by setting p - a. at X - 0 in Eq.
(8a):

22
co " (o /a K) • (14)

For larger cracks, the net force on the fibers that bridge the crack in
the region of asymptotic opening (i.e., X < c-co ) must balance the ap-
plied load. Consequently, the crack-tip stress concentration is induced
exclusively over the length co and the stress required to extend the
crack must be independent of the total crack length. The resultant
steady-state stress, given by Eq. (11) with c - c., is equal to am.

The complete equilibrium-stress/crack-size function is plotted in
Fig. 5. Also plotted for comparison is a solution obtained by numerical

integration.9 It is noted that the stress required to propagate a matrix
crack is almost independent of crack length for cracks larger than - cm/3.
This defines the range of crack sizes over which steady-state conditions
apply. The crack response in this region contrasts with the behavior of
cracks in unreinforced brittle materials, for which the strength de-
creases with c-1/ 2.

4.4 Fiber Failure Behind Crack Tip

When fibers fail behind the crack tip,10 rigorous evaluation of K,
would involve consideration of the statistical nature of fiber strengts.
However, in the present analysis, a single-valued fiber strength, S, is
assumed.* Then the position within the crack at which fiber failure

*A single-valued fiber strength implies that fiber failure occurs between

the crack surfaces, so that broken fibers do not exert closure forces on
the crack. On the other hand, a statistical distribution of fiber

strengths would allow fiber failure within the matrix and continued clo-
ure effect until the broken fiber pulls out of the matrix. Therefore,
the present calculations yield lower bound values of composite strengths.

8
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Fig. 5 Equilibrium-stress/crack-size functions for penny-shaped
matrix cracks in a composite containing high strength fibers
and in a monolithic material. After Ref. 9.

occurs is defined by Eq. (8a), with p(x) a Sf at x = c - d*;

d *(2- ) - (Sf)4/(c )2 (15)
c c

where K has been equated to Kc . Substitution of Eq. (15) into Eq. (9c)

then yields

K - (4/3,it) (Sf) 3/oi, . (16)p C

In this case, the closure effect of the fibers is manifest as a constant
decrease in stress intensity factor (independent of crack length), so
that the effect of the fibers is to increase the fracture toughness by
AKc . Kp.

Strength/crack-size relations pertinent to this crack configuration
can be conveniently compared with the results for the case where fibers
do not fail behind the crack tip by normalizing the stresses and crack
lengths with the parameters a. and cm defined in the previous section.
The relative toughness increase becomes

& -c/Kc . 2(Sf/a )3 (17)

and the strength/crack-size relation becomes (Eqs. (9) and (7))

(a/o-) - [1 + 2(Sf/) 3 1/3(c/cm) 1/2  (18)

Equation (18) is plotted in Fig. 6a for several values of the parameter
Sf/cl. The result from Section 4.3 for multiple matrix cracking (i.e., a
fully bridged crack) is also shown. It is noted that, in these normal-
ized coordinates, the crack response is determined by the parameter
Sf/ %, i.e., the relative magnitudes of the fiber strength and the

* steady-state matrix cracking stress.
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Fig. 6a Strength/crack-size relations for cracks fully bridged
by fibers (Eq. 12) and cracks with fiber failure occurring
behind the crack tips (Eq. 18).

4.5 Influence of Initial Crack Configuration on Strength

The stength/crack-size relation defined by Eq. (18) for composites
with Sf < a. corresponds to a special crack configuration in which the
trailing edge of the bridging zone is specified by fiber failure. More
generally, the crack configuration at instability depends on both the
size of the pre-existing matrix crack and the initial fiber bridging
state associated with the crack. Insight into the influence of initial
crack state on the strength can be obtained by considering two extreme
configurations: an initially fully-bridged crack and a crack that
initially has no bridging zone.

4.5.1 Initially Fully Bridged Crack

Matrix cracks that are initially fully bridged by fibers show three
regions of behavior, depending on the size of the crack. For small
cracks (i.e. c < d*) the crack opening is insufficient to cause fiber

~failure before the matrix crack becomes unstable at an applied stress
given by Eq. (12). As the crack extends fiber failure occurs in the wake
so that Eq. (12) also defines the strength of the composite. For inter-
mediate sized cracks, the opening at the crack mouth exceeds that re-
quiredfor fiber failure before the matrix crack extends. Then the equi-
librium bridging zone (i.e., d - d* defined by Eq. (15)) develops, and
the strength of the composite is given by Eq. (18). The crack lengths at
which this transition first occurs are given by setting c - d* in

_ Eq. (15);

4

c/c m  C (Sf/R )
4

G C (19)

The transition crack lengths are also defined in Fig. 6a by the intersec-
tions of the strength curve for fully bridged cracks with the set of
curves for cracks with broken fibers. For large cracks, the crack open-
itng approaches an asymptotic value (as discussed in Section 4.3) which is

tmaller than the opending ned by the approximate crack profile that
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underlies Eq. (18). In this case the net force on the fibers in the
asymptotic region balances the applied stress. Therefore, the crack re-
mains fully bridged until the applied stress exceeds Sf, whereupon fiber
failure is followed by catastropic failure of the composite. The transi-
tion to this long crack limit occurs when the stress defined by Eq. (18)
is 4 Sf. Strength/crack-size relations for these three regions of
behavior for initially fully-bridged cracks are shown in Fig. 6b.

INITIAL CRACK FULLY BRIDGED

_E

Z Z

~091
~0 79

0.63

0

00

0 1 2

NORMALIZED CRACK LENGTH. c,c m

Fig. 6b Strength/crack-size relations for cracks that
are initially fully bridged.

4.5.2 Initially Unbridged Crack

Matrix cracks that exist initially with a fiber bridging zone that
is smaller than d* can extend stably with increasing applied stress prior
to failure. This response is revealed by analyzing the growth of an ini-
tially unbridged crack of length co which extends so that a fiber bridg-
ing zone of length d develops and the total crack length becomes co + d
(Fig. 7). The equilibrium-stress/crack-size function for this crack is
obtained from Eqs. (9) and (13) with K - Kc;

a./oym -(1/3) (c ml/01/2 11 + 2(d/C m) 3/4 12 - (d/c m)/(C/c m)) 3 / 4 )  (20)

where c =c o + d. The equilibrium stress is plotted as a function of the
normalized crack extens ion, d/Cm, for various values of Co/Cm in Fig. 7
(solid curves). The broken curves in Fig. 7 indicate the critical zone
sizes d* for each value of Co/Cm and Sf/a., obtained by solving the nor-
malized form of Eq. (15);

(d/c ) [2 - (d/c M /c/C) (Sf/a) (21)

The curves in Fig. 7 indicate that crack growth is always stable with in-
creasing applied stress for co/C_0 > 0.15 and d < d*; stable crack growth

• occurs until d -d*, whereupon fber failure accompanies further matrix
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Fig. 7 Variation of equilibrium stress with extension of a

partly-bridged crack (solid curves), for several values

of the initial unbridged crack length co. Broken curves
represent loci of the critical zone size, d*, for the

onset of fiber failure at the end of the bridging zone.

crack extension, and failure is catastropic. The failure stress (defined
by the intersection of the appropriate solid and broken curves in Fig. 7)
is given by Eq. (18) with c - co + d*. For small initial cracks (co/cm
< 0.15) instability of the matrix crack can occur at d < d*. In this
case the strength of the composite exceeds the value given by Eq. (18).

The fracture response depicted in Fig. 7 can be characterized alter-

natively in terms of a crack-growth-resistance that increases with crack
extension (R-curve). 1 0 The R-curve is defined by Eq. (9) with KR - K. at
K - Kc, and can be expressed in the normalized form

KR/Kc - 1 + 2 (d/cm)3 /4 12 - (d/cm)Cco/cm + d/cml1]3 / 4  (22)

The R-curves for various values of co/c. are plotted in Fig. 8. Also
plotted are the limiting toughnesses, obtained from Eq. (17), for several

values of Sf/ a. The intersections of these two sets of curves define
the critical bridging zone size d*, for each combination of co/cm and
Sf/ .

The condition for failure (i.e., unstable crack growth) is defined

by K. a KR and dK.Idc = dK /dc. Thus, the crack stability depends on the
slope of th-T-curve, whic* in turn is dictated by the initial unbridged
crack length, co • For large cracks, stable growth occurs until d - d*
and KR equals the limiting toughness. For smaller initial cracks,
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Fig. 8 Crack growth resistance curves for partly-bridged cracks.
Horizontal lines represent the limiting toughnesses (i.e.,
the onset of fiber failure at the end of the bridging
zone). After Ref. 10.

instability may be achieved at d < d*. Fully bridged matrix cracks
exhibit instability without precursor stable growth.

5.0 DISCUSSION

5.1 Failure Mechanism in Frictionally Bonded Composites

The use of normalized strengths and crack lengths in the fracture
mechanics analysis of Section 4.0 has enabled the mechanics and mecha-
nisms of crack growth to be examined independently of the specific ma-
terial and microstructural properties. The results of the analysis,
summarized in Fig. 6, specify strength/crack-size relations for several
failure mechanisms, as well as defining conditions for transitions
between the mechanisms.

In composites containing fibers with sufficient strength to remain
intact after a crack extends completely through the matrix (i.e., Sf >
a), the formation of periodic matrix cracks precedes failure of the com-
posite. Then, the tensile strength of the composite can substantially
exceed the matrix-cracking stress and large strains-to-failure can be
achieved (Fig. 1). Moreover, the stress for matrix cracking is indepen-
dent of pre-existing crack-size for cracks longer than a characteristic
length. Under this condition the matrix cracking stress is an intrinsic
property of the composite and is, therefore, both damage tolerant and
independent of specimen size. Furthermore, it is noted that a fracture
toughness cannot be defined with reference to either the matrix cracking
event or the ultimate failure.
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If the relative strength of the fibers is smaller (i.e., Sf < am),
failure of the composite coincides with matrix fracture and the strength
of the composite becomes sensitive to pre-existing cracks. The failure
response is dependent on both the size of the pre-existing matrix crack
and the fiber bridging state associated with the crack. The response of
cracks that are initially fully bridged by fibers is characterized by a
fracture toughness which is enhanced by the reinforcing fibers. On the
other hand, a crack that is initially unbridged (e.g., a notch) encoun-
ters an increasing resistance (R-curve) as the crack extends in the
matrix and develops a bridging zone.

The reinforcing effect of the fibers can be inferred directly from
Fig. 6. The lowest curve (i.e., Eq. (18) with S = 0) represents the
product of the strength of the unreinforced matrix and the modulus ratio

Ec/Em . The differences between this curve and the other solutions repre-
sent the reinforcing effects of the fibers for composites with equal
fiber and matrix moduli (Ef - Em). For typical composites, the fiber
modulus is the larger, and the matrix-cracking stress of the composite is
always higher than the strength of the unreinforced matrix for a given
crack length. For composites with Ef < E., the matrix cracking stress is
higher than the unreinforced strength within certain ranges of crack
lengths and fiber strengths. Thus, it is evident that in general it is
not necessary for the fiber modulus to be higher than that of the matrix
in order to obtain reinforcement.

5.2 Microstructural Influences

The influence of microstructural properties on strength, toughness
and transitions between failure mechanisms can be readily assessed by

evaluating the normalizing parameters am and cm (Eqs. 8 and 13):

a . [12(0 - v2 )K 2 E f2 ( - f)(1 + r)2/E R 1/3 (23)

2 2 2/3

cm [(9713/2/32) KoEm (I - f)2(1 + n) R/Tf 2Ef( - v 2 ] (24)

For Sf > am multiple matrix cracking occurs at the steady-state stress co
- 0.8 am, provided the pre-existing flaws are lar er than about cm/3.
For the SiC/glass-ceramic composite, Ko . 2 XPa mT2, Ef = 200 GPa, E.
85 GPa, f - 0.5, R = 8 pm, and T 2 MPa. Substitution of these values
into Eqs. (23) and (24) yields cm 313 m and ao = 265 MPa. Thus, cm/ 3

represents several fiber spacings. Since the sizes of inherent flaws in
ceramics are usually about the same as microstructural dimensions, this
result implies that the condition for steady-state matrix-cracking will
be generally satisfied for this composite. Moreover, the predicted
stress, co, is consistent with measured values of 290 ± 20 MPa. 8 More
importantly, Eq. (23) provides a basis for design of optimum microstruc-
tures. The critical stress increases with the toughness of the matrix,
the modulus and volume fraction of fibers, the frictional stress at the
fiber/matrix interface, and decreasing fiber diameter.

The transition to the failure mechanism involving simultaneous fiber
failure and matrix cracking is dictated by the relative values of Sf and
am. If steady-state matrix cracking is desired, an increase in the
volume fraction of fibers aligned in the principal stress axis benefici-
ally influences all of the parameters that determine optimum steady-state
properties (i.e., cm decreases, while both c. and Sf increase). However,

the allowable increases in other parameters are limited. Increasing T
increases am and decreases cm, but the maximum increase in am is limited
by the fiber-failure stress. Increasing K. increases am but also has the
detrimental effect of increasing cm. Thus, the maximum acceptable Ko
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6could be dictated either by the fiber-failure stress or by the require-
ment that cm be less than a pre-existing flaw size. These restrictions
account for the brittle response observed in a number of fiber or
whisker-reinforced brittle systems, and place important bounds on the
design of optimum microstructures.

For the failure mechanisms that involve simultaneous fiber failure
and matrix cracking the limiting fracture toughness increase is

Kc = S
3 fEmR/6Ef Ko(1 + )(1 - v2)  (25)

and the range of crack lengths for which the limiting toughness applies

(i.e., c > d*) is defined by Eq. (21)

c > (n/8) [S2 E mR/(0 - v2 )KoEf( + 02 (26)

It is interesting to note that the influences of all material parameters
on LKc are opposite to their influence on the stress for steady-state
multiple matrix cracking (i.e., a-). This arises because, for a given
fiber strength (which does not influence am), the ratio Sf/cL decreases
with increasing am thus leading to a smaller fiber-bridging zone (Eq. 21)
and a decreased toughness increment (Eq. 17).
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